Physiological and molecular responses to cold stress in rapeseed(Brassica napus L.)

被引:0
|
作者
YAN Lei [1 ,2 ]
Tariq Shah [1 ]
CHENG Yong [1 ]
Lü Yan [1 ]
ZHANG Xue-kun [1 ]
ZOU Xi-ling [1 ]
机构
[1] Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs
[2] College of Plant Science and Technology, Huazhong Agricultural University
关键词
Brassica napus L; cold stress; morphological features; molecular regulation; physiological indicators;
D O I
暂无
中图分类号
S565.4 [油菜籽(芸薹)];
学科分类号
摘要
Low temperature is one of the most important abiotic factors inhibiting growth, productivity, and distribution of rapeseed(Brassica napus L.). Therefore, it is important to identify and cultivate cold-tolerant germplasm. The objective of this study was to figure out the mechanism of chilling(4 and 2°C) and freezing(–2 and –4°C) stresses along with a control(22°C) in B. napus cultivars(1801 and C20) under controlled environment(growth chamber). The experiment was arranged in a complete randomized design with three replications. Our results exhibited that under chilling and freezing stresses, the increment of proline accumulation, soluble sugar and protein contents, and antioxidant enzyme activity were enhanced more in 1801 cultivar compared with C20 cultivar. At –2 and –4°C, the seedlings of C20 cultivar died completely compared with 1801 cultivar. Hydrogen peroxide(H2 O2) and malondialdehyde contents(MDA) increased in both cultivars, but when the temperature was decreased up to –2 and –4°C, the MDA and H2 O2 contents continuously dropped in 1801 cultivar. Moreover, we found that leaf abscisic acid(ABA) was enhanced in 1801 cultivar under chilling and freezing stresses. Additionally, the transcriptional regulations of cold-tolerant genes(COLD1, CBF4, COR6.6, COR15, and COR25) were also determined using real-time quantitative PCR(RT-q PCR). RT-q PCR showed that higher expression of these genes were found in 1801 as compared to C20 under cold stress(chilling and freezing stresses). Therefore, it is concluded from this experiment that 1801 cultivar has a higher ability to respond to cold stress(chilling and freezing stresses) by maintaining hormonal, antioxidative, and osmotic activity along with gene transcription process than C20. The result of this study will provide a solid foundation for understanding physiological and molecular mechanisms of cold stress signaling in rapeseed(B. napus).
引用
收藏
页码:2742 / 2752
页数:11
相关论文
共 50 条
  • [31] Study of drought stress on seed and biological yield of rapeseed (Brassica napus L.) cultivars
    Pazoki, A. R.
    Rad, A. H. Shirani
    Habibi, D.
    Paknejad, F.
    Nasri, M.
    PROCEEDINGS OF 2010 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND DEVELOPMENT, 2010, : 152 - 156
  • [32] Gradual Exposure to Salinity Improves Tolerance to Salt Stress in Rapeseed (Brassica napus L.)
    Santangeli, Michael
    Capo, Concetta
    Beninati, Simone
    Pietrini, Fabrizio
    Forni, Cinzia
    WATER, 2019, 11 (08)
  • [33] Physiological maturity as a function of seed and pod water concentration in spring rapeseed (Brassica napus L.)
    Menendez, Yesica C.
    Botto, Javier F.
    Gomez, Nora V.
    Miralles, Daniel J.
    Rondanini, Deborah P.
    FIELD CROPS RESEARCH, 2019, 231 : 1 - 9
  • [34] Differences in biochemical responses to cold stress in two contrasting varieties of rape seed (Brassica napus L.)
    Zou Wang-hao Chen Yu-zhen Lu Cun-fu* College of Biological Sciences and Biotechnology
    Forestry Studies in China, 2007, (02) : 142 - 146
  • [35] Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings
    Huang He
    Yan Lei
    Zhang Yi
    Ali Raza
    Liu Zeng
    Lv Yan
    Ding Xiaoyu
    Cheng Yong
    Zou Xiling
    Plant Growth Regulation, 2021, 94 : 161 - 170
  • [36] Genetic and Physiological Responses to Heat Stress in Brassica napus
    Kourani, Mariam
    Mohareb, Fady
    Rezwan, Faisal I.
    Anastasiadi, Maria
    Hammond, John P.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [37] Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.)
    Raza, Ali
    Su, Wei
    Hussain, Muhammad Azhar
    Mehmood, Sundas Saher
    Zhang, Xuekun
    Cheng, Yong
    Zou, Xiling
    Lv, Yan
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [38] Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings
    He, Huang
    Lei, Yan
    Yi, Zhang
    Raza, Ali
    Zeng, Liu
    Yan, Lv
    Xiaoyu, Ding
    Yong, Cheng
    Xiling, Zou
    PLANT GROWTH REGULATION, 2021, 94 (02) : 161 - 170
  • [39] Phenotypic damage and transcriptomic responses of flower buds in rapeseed (Brassica napus L.) under low-temperature stress
    Qin, Mengfan
    Li, Haodong
    Guo, Zhiting
    Zhu, Yunlin
    Wang, Rongrong
    Zhang, Miao
    Zhang, Qi
    Xu, Yu
    Song, Jia
    Huang, Zhen
    Xu, Aixia
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 198
  • [40] Oxalic acid-mediated stress responses in Brassica napus L.
    Liang, Yue
    Strelkov, Stephen E.
    Kav, Nat N. V.
    PROTEOMICS, 2009, 9 (11) : 3156 - 3173