A Neighborhood Union Condition for Fractional ID-[a, b]-factor-critical Graphs

被引:3
作者
Yuan YUAN [1 ]
Rong-Xia HAO [1 ]
机构
[1] Department of Mathematics, Beijing Jiaotong University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
graph; minimum degree; neighborhood; fractional; a; b]-factor; fractional ID-[a; b]-factor-critical;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Let a, b, r be nonnegative integers with 1 ≤ a ≤ b and r ≥ 2. Let G be a graph of order n with n >(a+2 b)(r(a+b)-2)/b.In this paper, we prove that G is fractional ID-[a, b]-factor-critical if δ(G)≥bn/a+2 b+a(r-1)and |NG(x1) ∪ NG(x2) ∪…∪ NG(xr)| ≥(a+b)n/(a+2 b) for any independent subset {x1,x2,…,xr} in G. It is a generalization of Zhou et al.’s previous result [Discussiones Mathematicae Graph Theory, 36: 409-418(2016)]in which r = 2 is discussed. Furthermore, we show that this result is best possible in some sense.
引用
收藏
页码:775 / 781
页数:7
相关论文
共 8 条
  • [1] Neighborhood Conditions for Fractional ID-k-factor-critical Graphs
    Si-zhong ZHOU
    Zhi-ren SUN
    [J]. Acta Mathematicae Applicatae Sinica, 2018, 34 (03) : 636 - 644
  • [2] FRACTIONAL (g, f)-FACTORS OF GRAPHS
    刘桂真
    张兰菊
    [J]. Acta Mathematica Scientia, 2001, (04) : 541 - 545
  • [3] A Neighborhood Condition for Fractional ID-[A, B]-Factor-Critical Graphs [J] . Sizhong Zhou,Fan Yang,Zhiren Sun.&nbsp&nbspDiscussiones Mathematicae Graph Theory . 2016 (2)
  • [4] Simplified existence theorems on all fractional [ a , b ] -factors [J] . Hongliang Lu.&nbsp&nbspDiscrete Applied Mathematics . 2013 (13-1)
  • [5] Sufficient Condition for the Existence of an Even [ a , b ]-Factor in Graph [J] . Mekkia Kouider,Saliha Ouatiki.&nbsp&nbspGraphs and Combinatorics . 2013 (4)
  • [6] Independence number and minimum degree for fractional ID-k-factor-critical graphs
    Sizhong Zhou
    Lan Xu
    Zhiren Sun
    [J]. Aequationes mathematicae, 2012, 84 : 71 - 76
  • [7] The existence of k-factors in squares of graphs
    Fourtounelli, Olga
    Katerinis, P.
    [J]. DISCRETE MATHEMATICS, 2010, 310 (23) : 3351 - 3358
  • [8] Connected factors in K 1 , n -free graphs containing an [ a , b ] -factor [J] . Taro Tokuda.&nbsp&nbspDiscrete Mathematics . 2006 (21)