Anisotropic rectangular nonconforming finite element analysis for Sobolev equations

被引:0
作者
石东洋
王海红
郭城
机构
[1] DepartmentofMathematics,ZhengzhouUniversity
关键词
nonconforming element; anisotropy; Sobolev equations; error estimates; superconvergence;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
An anisotropic rectangular nonconforming finite element method for solving the Sobolev equations is discussed under semi-discrete and full discrete schemes. The corresponding optimal convergence error estimates and superclose property are derived, which are the same as the traditional conforming finite elements. Furthermore, the global superconvergence is obtained using a post-processing technique. The numerical results show the validity of the theoretical analysis.
引用
收藏
页码:1203 / 1214
页数:12
相关论文
共 6 条
[1]   Sobolev方程的H1-Galerkin混合有限元方法 [J].
郭玲 ;
陈焕贞 .
系统科学与数学, 2006, (03) :301-314
[2]   Error Estimates for Mixed Finite Element Methods for Sobolev Equation [J].
姜子文 ;
陈焕祯 .
Northeastern Mathematical Journal, 2001, (03) :301-314
[3]   Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations [J].
He, Yinnian ;
Sun, Weiwei .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) :837-869
[4]  
Finite-Element Approximation of the Nonstationary Navier-Stokes Problem Part IV: Error Analysis for Second-Order Time Discretization[J] . John G. Heywood,Rolf Rannacher.SIAM Journal on Numerical Analysis . 1990 (2)