Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats

被引:0
|
作者
Jian Hao [1 ]
Bo Li [1 ]
Hui-quan Duan [1 ]
Chen-xi Zhao [1 ]
Yan Zhang [1 ]
Chao Sun [1 ]
Bin Pan [1 ]
Chang Liu [2 ]
Xiao-hong Kong [2 ]
Xue Yao [1 ,3 ]
Shi-qing Feng [1 ,3 ]
机构
[1] Department of Orthopedics, Tianjin Medical University General Hospital
[2] School of Medicine, Nankai University
[3] Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education
基金
中国国家自然科学基金;
关键词
nerve regeneration; spinal cord injury; deferoxamine; tumor necrosis factor-α; interleukin-1β; apoptosis; iron; anti-inflammatory; glial scar; proinflammatory; rats; motor function; lipid peroxidation; neural regeneration;
D O I
暂无
中图分类号
R651.2 [脊髓];
学科分类号
1002 ; 100210 ;
摘要
Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in a rat model of spinal cord injury and explored potential mechanisms for this effect. Spinal cord injury was induced by impacting the spinal cord at the thoracic T10 vertebra level. One group of injured rats received deferoxamine, a second injured group received saline, and a third group was sham operated. Both 2 days and 2 weeks after spinal cord injury, total iron ion levels and protein expression levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β and the pro-apoptotic protein caspase-3 in the spinal cords of the injured deferoxamine-treated rats were significantly lower than those in the injured saline-treated group. The percentage of the area positive for glial fibrillary acidic protein immunoreactivity and the number of terminal deoxynucleotidyl transferase d UTP nick end labeling-positive cells were also significantly decreased both 2 days and 2 weeks post injury, while the number of Neu N-positive cells and the percentage of the area positive for the oligodendrocyte marker CNPase were increased in the injured deferoxamine-treated rats. At 14–56 days post injury, hind limb motor function in the deferoxamine-treated rats was superior to that in the saline-treated rats. These results suggest that deferoxamine decreases total iron ion, tumor necrosis factor-α, interleukin-1β, and caspase-3 expression levels after spinal cord injury and inhibits apoptosis and glial scar formation to promote motor function recovery.
引用
收藏
页码:959 / 968
页数:10
相关论文
共 50 条
  • [21] Recovery from spinal cord injury - underlying mechanisms and efficacy of rehabilitation
    Dietz, V
    Colombo, G
    MECHANISMS OF SECONDARY BRAIN DAMAGE FROM TRAUMA AND ISCHEMIA, RECENT ADVANCES OF OUR UNDERSTANDING, 2004, 89 : 95 - 100
  • [22] Lithium promotes recovery of neurological function after spinal cord injury by inducing autophagy
    Zhang, Duo
    Wang, Fang
    Zhai, Xu
    Li, Xiao-Hui
    He, Xi-Jing
    NEURAL REGENERATION RESEARCH, 2018, 13 (12) : 2191 - 2199
  • [23] Deferoxamine Ameliorates Compressed Spinal Cord Injury by Promoting Neovascularization in Rats
    Guoqing Tang
    Yong Chen
    Ji Chen
    Zhe Chen
    Weimin Jiang
    Journal of Molecular Neuroscience, 2020, 70 : 1437 - 1444
  • [24] Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury
    Gao, Shuang
    Zhang, Zhong-ming
    Shen, Zhao-liang
    Gao, Kai
    Chang, Liang
    Guo, Yue
    Li, Zhuo
    Wang, Wei
    Wang, Ai-mei
    NEURAL REGENERATION RESEARCH, 2016, 11 (06) : 977 - 982
  • [25] Deferoxamine Ameliorates Compressed Spinal Cord Injury by Promoting Neovascularization in Rats
    Tang, Guoqing
    Chen, Yong
    Chen, Ji
    Chen, Zhe
    Jiang, Weimin
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2020, 70 (09) : 1437 - 1444
  • [26] MODULATION OF MATRIX METALLOPROTEINASES AFTER SPINAL CORD INJURY IMPROVES FUNCTIONAL RECOVERY OF RATS
    Chelluboina, B.
    Veeravalli, K. K.
    Dinh, D. H.
    Rao, J. S.
    Dasari, V. R.
    JOURNAL OF NEUROTRAUMA, 2014, 31 (12) : A74 - A74
  • [27] GPNMB Modulates Autophagy to Enhance Functional Recovery After Spinal Cord Injury in Rats
    Li, Xixi
    Xu, Jiakun
    Su, Weijie
    Su, Luoxi
    Chen, Xiangkun
    Yang, Jia
    Lin, Xunxun
    Yang, Lixuan
    CELL TRANSPLANTATION, 2024, 33
  • [28] CONTRIBUTION OF SEROTONIN NEURONS TO THE FUNCTIONAL RECOVERY AFTER SPINAL-CORD INJURY IN RATS
    HASHIMOTO, T
    FUKUDA, N
    BRAIN RESEARCH, 1991, 539 (02) : 263 - 270
  • [29] Contrasting neuropathology and functional recovery after spinal cord injury in developing and adult rats
    Qiuju Yuan
    Huanxing Su
    Kin Chiu
    Wutian Wu
    Zhi-Xiu Lin
    Neuroscience Bulletin, 2013, 29 : 509 - 516
  • [30] Contrasting neuropathology and functional recovery after spinal cord injury in developing and adult rats
    Yuan, Qiuju
    Su, Huanxing
    Chiu, Kin
    Wu, Wutian
    Lin, Zhi-Xiu
    NEUROSCIENCE BULLETIN, 2013, 29 (04) : 509 - 516