Infinitely Many Periodic Solutions for a Class of Second-order Hamiltonian Systems

被引:1
作者
Ming-hai YANG [1 ]
Yue-fen CHEN [1 ]
Yan-fang XUE [1 ]
机构
[1] Department of Mathematics,Xinyang Normal University
关键词
second-order Hamiltonian systems; periodic solutions; Fountain theorem;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper we study the existence of infinitely many periodic solutions for second-order Hamiltonian systems{ü(t)+A(t)u(t)+▽F(t,u(t))=0,u(0)-u(T)=(0)-(T)=0,where F(t,u) is even in u,and ▽(t,u) is of sublinear growth at infinity and satisfies the Ahmad-Lazer-Paul condition.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 7 条
[1]   共振条件下的常微分方程组2π-周期解的存在性 [J].
韩志清 .
数学学报, 2000, (04) :639-644
[2]  
A periodic solution for a second-order asymptotically linear Hamiltonian system [J] . Fukun Zhao,Jin Chen,Minbo Yang.&nbsp&nbspNonlinear Analysis . 2008 (11)
[3]  
Periodic solutions for some second order systems [J] . Fengjuan Meng,Fubao Zhang.&nbsp&nbspNonlinear Analysis . 2007 (11)
[4]   Infinitely many solutions for Hamiltonian systems [J].
Zou, WM ;
Li, SJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (01) :141-164
[5]   Periodic solutions for nonautonomous second order systems with sublinear nonlinearity [J].
Tang, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) :3263-3270
[6]   ON AN ELLIPTIC EQUATION WITH CONCAVE AND CONVEX NONLINEARITIES [J].
BARTSCH, T ;
WILLEM, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (11) :3555-3561
[7]   SUBHARMONIC SOLUTIONS FOR SUBQUADRATIC HAMILTONIAN-SYSTEMS [J].
SILVA, EADE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 115 (01) :120-145