Ligustilide protects PC12 cells from oxygen-glucose deprivation/reoxygenation-induced apoptosis via the LKB1-AMPK-mTOR signaling pathway

被引:1
|
作者
Dan-Yang Zhao [1 ,2 ]
Dong-Dong Yu [3 ]
Li Ren [2 ]
Guo-Rong Bi [1 ]
机构
[1] Shengjing Hospital of China Medical University
[2] The First People's Hospital of Shenyang
[3] The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine
关键词
AMPK; apoptosis; autophagy; Bax; Bcl-2; Beclin; LC3-II; ligustilide; mTOR; PC12; cells;
D O I
暂无
中图分类号
R285.5 [中药实验药理];
学科分类号
摘要
Autophagy has been shown to have a protective effect against brain damage. Ligustilide(LIG) is a bioactive substance isolated from Ligusticum chuanxiong, a traditional Chinese medicine. LIG has a neuroprotective effect; however, it is unclear whether this neuroprotective effect involves autophagy. In this study, PC12 cells were treated with 1 × 10–5–1 × 10–9 M LIG for 0, 3, 12 or 24 hours, and cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium(MTS) assay. Treatment with 1 × 10–6 M LIG for 3 hours had the greatest effect on cell proliferation, and was therefore used for subsequent experiments. PC12 cells were pre-treated with 1 × 10–6 M LIG for 3 hours, cultured in 95% N2/5% CO2 in Dulbecco’s modified Eagle’s medium without glucose or serum for 4 hours, and then cultured normally for 16 hours, to simulate oxygen-glucose deprivation/reoxygenation(OGD/R). Cell proliferation was assessed with the MTS assay. Apoptosis was detected by flow cytometry. The expression levels of apoptosis-related proteins, Bcl-2 and Bax, autophagy-related proteins, Beclin 1 and microtubule-associated protein l light chain 3 B(LC3-II), and liver kinase B1(LKB1)-5′-adenosine monophosphate-activated protein kinase(AMPK)-mammalian target of rapamycin(mTOR) signaling pathway-related proteins were assessed by western blot assay. Immunofluorescence staining was used to detect LC3-II expression. Autophagosome formation was observed by electron microscopy. LIG significantly decreased apoptosis, increased Bcl-2, Beclin 1 and LC3-II expression, decreased Bax expression, increased LC3-II immunoreactivity and the number of autophagosomes, and activated the LKB1-AMPK-mTOR signaling pathway in PC12 cells exposed to OGD/R. The addition of the autophagy inhibitor 3-methyladenine or dorsomorphin before OGD/R attenuated the activation of the LKB1-AMPK-mTOR signaling pathway in cells treated with LIG. Taken together, our findings show that LIG promotes autophagy and protects PC12 cells from apoptosis induced by OGD/R via the LKB1-AMPK-mTOR signaling pathway.
引用
收藏
页码:473 / 481
页数:9
相关论文
共 50 条
  • [1] Ligustilide protects PC12 cells from oxygen-glucose deprivation/reoxygenation-induced apoptosis via the LKB1-AMPK-mTOR signaling pathway
    Zhao, Dan-Yang
    Yu, Dong-Dong
    Ren, Li
    Bi, Guo-Rong
    NEURAL REGENERATION RESEARCH, 2020, 15 (03) : 473 - 481
  • [2] Paeoniflorin protects PC12 cells from oxygen-glucose deprivation/reoxygenation-induced injury via activating JAK2/STAT3 signaling
    Zhang, Zhuo
    Yang, Weimin
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 21 (06)
  • [3] Naringin Targets NFKB1 to Alleviate Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury in PC12 Cells Via Modulating HIF-1α/AKT/mTOR-Signaling Pathway
    Cao, Wei
    Feng, She-Jun
    Kan, Min-Chen
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2021, 71 (01) : 101 - 111
  • [4] YBX1 Protects against Apoptosis Induced by Oxygen-Glucose Deprivation/Reoxygenation in PC12 Cells via Activation of the AKT/GSK3β Pathway
    Tuerxun, T.
    Li, X.
    Hou, F.
    Wang, Y.
    Wang, X.
    Ma, L.
    FOLIA BIOLOGICA, 2021, 67 (04) : 150 - 157
  • [5] Higenamine protects neuronal cells from oxygen-glucose deprivation/reoxygenation-induced injury
    Zhang, Yi
    Zhang, Jingjing
    Wu, Chuntao
    Guo, Sheng
    Su, Jing
    Zhao, Wendong
    Xing, Hongxia
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 3757 - 3764
  • [6] Naringin Targets NFKB1 to Alleviate Oxygen-Glucose Deprivation/Reoxygenation–Induced Injury in PC12 Cells Via Modulating HIF-1α/AKT/mTOR-Signaling Pathway
    Wei Cao
    She-Jun Feng
    Min-Chen Kan
    Journal of Molecular Neuroscience, 2021, 71 : 101 - 111
  • [7] RP105 protects PC12 cells from oxygen-glucose deprivation/reoxygenation injury via activation of the PI3K/AKT signaling pathway
    Sun, Yanpeng
    Liu, Lu
    Yuan, Jiang
    Sun, Qiang
    Wang, Na
    Wang, Yunfu
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 41 (05) : 3081 - 3089
  • [8] Knockdown of IL-32 protects PC12 cells against oxygen-glucose deprivation/reoxygenation-induced injury via activation of Nrf2/NF-κB pathway
    Yin, Hua
    Wu, Meiyu
    Jia, Yue
    METABOLIC BRAIN DISEASE, 2020, 35 (02) : 363 - 371
  • [9] Knockdown of IL-32 protects PC12 cells against oxygen-glucose deprivation/reoxygenation-induced injury via activation of Nrf2/NF-κB pathway
    Hua Yin
    Meiyu Wu
    Yue Jia
    Metabolic Brain Disease, 2020, 35 : 363 - 371
  • [10] Petatewalide B alleviates oxygen-glucose deprivation/reoxygenation-induced neuronal injury via activation of the AMPK/Nrf2 signaling pathway
    Park, Sun Young
    Cho, Min Hyun
    Li, Mei
    Li, Ke
    Park, Geuntae
    Choi, Young-Whan
    MOLECULAR MEDICINE REPORTS, 2020, 22 (01) : 239 - 246