FY-3C MWRI在轨交叉辐射定标

被引:1
|
作者
曾子倩
蒋耿明
机构
[1] 复旦大学电磁波信息科学教育部重点实验室
基金
国家重点研发计划;
关键词
交叉辐射定标; FY-3C MWRI; GMI; 双差异法; 海洋微波辐射传输模型;
D O I
暂无
中图分类号
P407 [大气遥感];
学科分类号
1404 ;
摘要
精确辐射定标是定量遥感的基础。以搭载在全球降水测量(Global Precipitation Measurement,GPM)卫星上的微波成像仪(GPM Microwave Imager,GMI)为辐射基准,用双差异(Double Difference,DD)方法对搭载在我国风云三号C星(Fengyun 3C,FY-3C)上的微波成像仪(Microwave Radiation Imager,MWRI)进行在轨交叉辐射定标。首先,将FY-3C MWRI数据、GMI数据和第五版欧洲中尺度天气预报中心再分析(European Centre for Medium-Range Weather Forecast Re-Analysis V5,ERA5)数据重采样至1°×1°的全球规则格网空间;其次,根据匹配条件收集晴空海面上的匹配观测点,用海洋微波辐射传输模型分别模拟FY-3C MWRI和GMI各个通道大气顶亮温;然后,根据匹配的观测值和模拟值计算DD值和FY-3C MWRI的理论观测值;最后,确定交叉辐射定标系数,并完成对FY-3C MWRI数据的定标重处理。结果表明:相对于GMI,FY-3C MWRI观测值被低估,特别是低频通道,但随着频率的增大,定标误差逐渐变小。FY-3C MWRI升轨(MWRIA)的定标误差比降轨(MWRID)小1.0~2.0 K。在全球天基交叉辐射定标系统(Global Space-based Inter-Calibration System,GSICS)所定义的标准场景亮温下,对于10V/H、18V/H、23V、36V/H和89V/H共9个通道,MWRIA的辐射定标误差分别为-6.7±0.3 K、-8.7±0.7 K、-2.9±0.7 K、-2.0±0.8 K、-2.4±0.7 K、-4.0±0.8 K、-2.4±1.4 K、-1.3±1.0 K和-0.4±1.8 K;而MWRID的辐射定标误差分别为-7.9±0.7 K、-9.7±0.9 K、-4.3±0.9 K、-3.0±0.8 K、-3.5±0.9 K、-5.1±0.8 K、-3.0±1.1 K、-2.4±0.6 K和-1.0±2.1 K。
引用
收藏
页码:682 / 691
页数:10
相关论文
共 15 条
  • [1] Intercalibration of Advanced Himawari Imager's Infrared Channels With IASI/Metop-B 1C Data
    Li, Wen-Xia
    Jiang, Geng-Ming
    Li, Guicai
    Li, Chuan
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (06) : 1989 - 1996
  • [2] Intercalibration of the GPM Microwave Radiometer Constellation[J] . Wesley Berg,Stephen Bilanow,Ruiyao Chen,Saswati Datta,David Draper,Hamideh Ebrahimi,Spencer Farrar,W. Linwood Jones,Rachael Kroodsma,Darren McKague,Vivienne Payne,James Wang,Thomas Wilheit,John Xun Yang.American Meteorological Society . 2016
  • [3] Inter-calibration of VIRR/FY-3A/B split-window channels with AIRS/Aqua and IASI/Metop-A measurements
    Jiang, Geng-Ming
    Wang, Zhong-Yi
    Wang, Junbang
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (22) : 5249 - 5269
  • [4] Estimation and Correction of Geolocation Errors in FengYun-3C Microwave Radiation Imager Data
    Tang, Fei
    Zou, Xiaolei
    Yang, Hu
    Weng, Fuzhong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 407 - 420
  • [5] Improving Collocation-Based Scan-Dependent Intercalibration Over the Ocean for Spaceborne Radiometry
    Yang, John Xun
    McKague, Darren S.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (04) : 589 - 593
  • [6] Overview of Intercalibration of Satellite Instruments
    Chander, Gyanesh
    Hewison, Tim J.
    Fox, Nigel
    Wu, Xiangqian
    Xiong, Xiaoxiong
    Blackwell, William J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (03): : 1056 - 1080
  • [7] Toward an Intercalibrated Fundamental Climate Data Record of the SSM/I Sensors
    Sapiano, Mathew R. P.
    Berg, Wesley K.
    McKague, Darren S.
    Kummerow, Christian D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (03): : 1492 - 1503
  • [8] Intercalibration of infrared channels of polar-orbiting IRAS/FY-3A with AIRS/Aqua data
    Jiang, Geng-Ming
    [J]. OPTICS EXPRESS, 2010, 18 (04): : 3358 - 3363
  • [9] Cross-calibration of MSG1-SEVIRI infrared channels with Terra-MODIS channels
    Jiang, G. -M.
    Li, Z. -L.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (03) : 753 - 769
  • [10] Intercalibration of SVISSR/FY-2C Infrared Channels Against MODIS/Terra and AIRS/Aqua Channels
    Jiang, Geng-Ming
    Yan, Hao
    Ma, Ling-Ling
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (05): : 1548 - 1558