Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems

被引:0
|
作者
李瑞红 [1 ]
陈为胜 [1 ]
机构
[1] Department of Mathematics, Xidian University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
fractional-order Lorenz-like system; stability analysis; pitchfork bifurcation; chaos control;
D O I
暂无
中图分类号
O415.5 [混沌理论]; O231 [控制论(控制论的数学理论)];
学科分类号
摘要
In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.
引用
收藏
页码:154 / 160
页数:7
相关论文
共 50 条
  • [41] The Synchronization of Three Fractional-Order Lorenz Chaotic Systems
    Yu, Yong-Guang
    Wen, Guo-Guang
    Li, Han-Xiong
    Diao, Miao
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (03) : 379 - 386
  • [42] Controlling chaos in a Lorenz-like system using feedback
    Kociuba, G
    Heckenberg, NR
    PHYSICAL REVIEW E, 2003, 68 (06):
  • [43] Dynamical effects of hypergraph links in a network of fractional-order complex systems
    Ramasamy, Mohanasubha
    Kumarasamy, Suresh
    Srinivasan, Ashokkumar
    Subburam, Pavithra
    Rajagopal, Karthikeyan
    CHAOS, 2022, 32 (12)
  • [44] Lorenz-like systems and classical dynamical equations with memory forcing: An alternate point of view for singling out the origin of chaos
    Festa, R
    Mazzino, A
    Vincenzi, D
    PHYSICAL REVIEW E, 2002, 65 (04):
  • [45] Chaos synchronization of fractional-order differential systems
    Li, CP
    Deng, WH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (07): : 791 - 803
  • [46] CHAOS AND ADAPTIVE SYNCHRONIZATIONS IN FRACTIONAL-ORDER SYSTEMS
    Liu, Xiaojun
    Hong, Ling
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):
  • [47] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
    Marius-F Danca
    Wallace K S Tang
    Chinese Physics B, 2016, (01) : 511 - 517
  • [48] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
    Danca, Marius-F
    Tang, Wallace K. S.
    CHINESE PHYSICS B, 2016, 25 (01)
  • [49] Chaos Control of a Fractional-Order Financial System
    Abd-Elouahab, Mohammed Salah
    Hamri, Nasr-Eddine
    Wang, Junwei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [50] Impulsive stabilization of chaos in fractional-order systems
    Marius-F. Danca
    Michal Fečkan
    Guanrong Chen
    Nonlinear Dynamics, 2017, 89 : 1889 - 1903