Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems

被引:0
|
作者
李瑞红 [1 ]
陈为胜 [1 ]
机构
[1] Department of Mathematics, Xidian University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
fractional-order Lorenz-like system; stability analysis; pitchfork bifurcation; chaos control;
D O I
暂无
中图分类号
O415.5 [混沌理论]; O231 [控制论(控制论的数学理论)];
学科分类号
070105 ; 070201 ; 0711 ; 071101 ; 0811 ; 081101 ;
摘要
In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.
引用
收藏
页码:154 / 160
页数:7
相关论文
共 50 条
  • [31] Consensus Control of Fractional-Order Multi-Agent Systems With Time Delays via Fractional-Order Iterative Learning Control
    Lv, Shuaishuai
    Pan, Mian
    Li, Xungen
    Cai, Wenyu
    Lan, Tianyi
    Li, Bingqiang
    IEEE ACCESS, 2019, 7 : 159731 - 159742
  • [32] Dynamical behaviour of fractional-order finance system
    Muhammad Farman
    Ali Akgül
    Muhammad Umer Saleem
    Sumaiyah Imtiaz
    Aqeel Ahmad
    Pramana, 2020, 94
  • [33] Dynamical behaviour of fractional-order finance system
    Farman, Muhammad
    Akguel, Ali
    Saleem, Muhammad Umer
    Imtiaz, Sumaiyah
    Ahmad, Aqeel
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [34] Fractional-order dynamical model for electricity markets
    Dassios, Ioannis
    Kerci, Taulant
    Baleanu, Dumitru
    Milano, Federico
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 8349 - 8361
  • [35] Control chaos in fractional-order system via two kinds of intermittent schemes
    Su, Kalin
    Li, Chunlai
    OPTIK, 2015, 126 (20): : 2671 - 2673
  • [36] Bifurcation analysis and chaos control of a discrete fractional-order Leslie-Gower model with fear factor
    Shi, Yao
    Wang, Zhenyu
    AIMS MATHEMATICS, 2024, 9 (11): : 30298 - 30319
  • [37] Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities
    Roohi, Majid
    Aghababa, Mohammad Pourmahmood
    Haghighi, Ahmad Reza
    COMPLEXITY, 2015, 21 (02) : 211 - 223
  • [38] Suppressing chaos in discontinuous systems of fractional order by active control
    Danca, Marius-F.
    Garrappa, Roberto
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 89 - 102
  • [39] Control and Synchronization of Nonlinear Fractional-order Systems by Comparison Pricinple
    Wang Zhiliang
    Ma Tiedong
    Wang Yinchun
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 659 - 664
  • [40] Generalized fractional-order time-delayed feedback control and synchronization designs for a class of fractional-order chaotic systems
    Soukkou, Ammar
    Boukabou, Abdelkrim
    Goutas, Ahcene
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2018, 47 (07) : 679 - 713