Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems

被引:0
|
作者
李瑞红 [1 ]
陈为胜 [1 ]
机构
[1] Department of Mathematics, Xidian University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
fractional-order Lorenz-like system; stability analysis; pitchfork bifurcation; chaos control;
D O I
暂无
中图分类号
O415.5 [混沌理论]; O231 [控制论(控制论的数学理论)];
学科分类号
摘要
In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.
引用
收藏
页码:154 / 160
页数:7
相关论文
共 50 条
  • [31] Analytical and numerical investigation of two families of Lorenz-like dynamical systems
    Panchev, S.
    Spassova, T.
    Vitanov, N. K.
    CHAOS SOLITONS & FRACTALS, 2007, 33 (05) : 1658 - 1671
  • [32] Optimal fractional-order PID control of chaos in the fractional-order BUCK converter
    Zhu, Darui
    Liu, Ling
    Liu, Chongxin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 787 - 791
  • [33] Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control
    Li, Ruihong
    Li, Wei
    OPTIK, 2015, 126 (21): : 2965 - 2973
  • [34] Fractional-order complex T system: bifurcations, chaos control, and synchronization
    Xiaojun Liu
    Ling Hong
    Lixin Yang
    Nonlinear Dynamics, 2014, 75 : 589 - 602
  • [35] Fractional-order complex T system: bifurcations, chaos control, and synchronization
    Liu, Xiaojun
    Hong, Ling
    Yang, Lixin
    NONLINEAR DYNAMICS, 2014, 75 (03) : 589 - 602
  • [36] COMPARISON OF LORENZ-LIKE LASER BEHAVIOR WITH THE LORENZ MODEL
    HUBNER, U
    KLISCHE, W
    ABRAHAM, NB
    WEISS, CO
    COHERENCE AND QUANTUM OPTICS VI, 1989, : 517 - 520
  • [37] Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes
    Xiangjun Wu
    Darong Lai
    Hongtao Lu
    Nonlinear Dynamics, 2012, 69 : 667 - 683
  • [38] The fractional-order Lorenz-type systems: A review
    Petras, Ivo
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 362 - 377
  • [39] Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes
    Wu, Xiangjun
    Lai, Darong
    Lu, Hongtao
    NONLINEAR DYNAMICS, 2012, 69 (1-2) : 667 - 683
  • [40] The fractional-order Lorenz-type systems: A review
    Ivo Petráš
    Fractional Calculus and Applied Analysis, 2022, 25 : 362 - 377