Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems

被引:0
|
作者
李瑞红 [1 ]
陈为胜 [1 ]
机构
[1] Department of Mathematics, Xidian University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
fractional-order Lorenz-like system; stability analysis; pitchfork bifurcation; chaos control;
D O I
暂无
中图分类号
O415.5 [混沌理论]; O231 [控制论(控制论的数学理论)];
学科分类号
070105 ; 070201 ; 0711 ; 071101 ; 0811 ; 081101 ;
摘要
In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.
引用
收藏
页码:154 / 160
页数:7
相关论文
共 50 条
  • [1] Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems
    Li Rui-Hong
    Chen Wei-Sheng
    CHINESE PHYSICS B, 2013, 22 (04)
  • [2] Chaos control in the fractional-order Lorenz system with Random Parameter
    Qiao, Wei
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING, PTS 1-3, 2013, 278-280 : 1423 - 1426
  • [3] Study on the Inherent Complex Features and Chaos Control of IS-LM Fractional-Order Systems
    Ma, Junhai
    Ren, Wenbo
    Zhan, Xueli
    ENTROPY, 2016, 18 (09):
  • [4] Fractional-order complex T system: bifurcations, chaos control, and synchronization
    Xiaojun Liu
    Ling Hong
    Lixin Yang
    Nonlinear Dynamics, 2014, 75 : 589 - 602
  • [5] Fractional-order complex T system: bifurcations, chaos control, and synchronization
    Liu, Xiaojun
    Hong, Ling
    Yang, Lixin
    NONLINEAR DYNAMICS, 2014, 75 (03) : 589 - 602
  • [6] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
    Danca, Marius-F
    Tang, Wallace K. S.
    CHINESE PHYSICS B, 2016, 25 (01)
  • [7] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
    Marius-F Danca
    Wallace K S Tang
    Chinese Physics B, 2016, (01) : 511 - 517
  • [8] Chaos control strategy for a fractional-order financial model
    Changjin Xu
    Chaouki Aouiti
    Maoxin Liao
    Peiluan Li
    Zixin Liu
    Advances in Difference Equations, 2020
  • [9] Chaos control via a simple fractional-order controller
    Tavazoei, Mohammad Saleh
    Haeri, Mohammad
    PHYSICS LETTERS A, 2008, 372 (06) : 798 - 807
  • [10] Chaos control strategy for a fractional-order financial model
    Xu, Changjin
    Aouiti, Chaouki
    Liao, Maoxin
    Li, Peiluan
    Liu, Zixin
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)