VERTEX-DISJOINT QUADRILATERALS IN BIPARTITE GRAPHS

被引:0
|
作者
YAN Jin LIU Guizhen (School of Mathematics & Systems Science
机构
基金
中国国家自然科学基金;
关键词
Graphs; bipartite graphs; quadrilaterals; cycles;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
H. Wang considered the minimum degrees condition that G has large vertex-disjoint cycles in bipartite graphs. Motivated by this, we consider the small vertex-disjoint cycles in bipartite graphs in this paper. We prove the following result: Let m > 3, n > 2 and k >1 be three integers. Let G = (V1,V2;E) be a bipartite graph with | V1| = | V2| =n > 2k+1. If the minimum degreefor any cycle C of G with length 2m, then G contains k vertex-disjoint cycles of length 4. Moreover, the degrees condition is sharp.
引用
收藏
页码:532 / 537
页数:6
相关论文
共 50 条
  • [1] Vertex-disjoint hexagons with chords in a bipartite graph
    Wang, H
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 221 - 231
  • [2] Partitioning a bipartite graph into vertex-disjoint paths
    Li, Jianping
    Steiner, George
    ARS COMBINATORIA, 2006, 81 : 161 - 173
  • [3] Minimal spectrum-sums of bipartite graphs with exactly two vertex-disjoint cycles
    Wei, Fuyi
    Zhou, Bo
    Trinajstic, Nenad
    CROATICA CHEMICA ACTA, 2008, 81 (02) : 363 - 367
  • [4] Unpaired many-to-many vertex-disjoint path covers of a class of bipartite graphs
    Chen, Xie-Bin
    INFORMATION PROCESSING LETTERS, 2010, 110 (06) : 203 - 205
  • [5] On Vertex-Disjoint Triangles in Tripartite Graphs and Multigraphs
    Qingsong Zou
    Jiawang Li
    Zizheng Ji
    Graphs and Combinatorics, 2020, 36 : 1355 - 1361
  • [6] On Vertex-Disjoint Triangles in Tripartite Graphs and Multigraphs
    Zou, Qingsong
    Li, Jiawang
    Ji, Zizheng
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1355 - 1361
  • [7] Vertex-disjoint rainbow triangles in edge-colored graphs
    Hu, Jie
    Li, Hao
    Yang, Donglei
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [8] On the existence of vertex-disjoint subgraphs with high degree sum
    Chiba, Shuya
    Lichiardopol, Nicolas
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 84 - 95
  • [9] Anti-Ramsey numbers for vertex-disjoint triangles
    Wu, Fangfang
    Zhang, Shenggui
    Li, Binlong
    Xiao, Jimeng
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [10] An improved kernel for planar vertex-disjoint triangle packing
    Sheng, Zimo
    Xiao, Mingyu
    THEORETICAL COMPUTER SCIENCE, 2022, 922 : 122 - 130