New exact penalty function for solving constrainedfinite min-max problems

被引:0
作者
马骋 [1 ]
李迅 [1 ]
姚家晖 [1 ]
张连生 [2 ]
机构
[1] Department of Applied Mathematics,The Hong Kong Polytechnic University
[2] Department of Mathematics,College of Sciences,Shanghai University
关键词
min-max problem; constrained optimization; penalty function;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
This paper introduces a new exact and smooth penalty function to tackleconstrained min-max problems.By using this new penalty function and adding justone extra variable,a constrained min-max problem is transformed into an unconstrainedoptimization one.It is proved that,under certain reasonable assumptions and when thepenalty parameter is sufficiently large,the minimizer of this unconstrained optimizationproblem is equivalent to the minimizer of the original constrained one.Numerical resultsdemonstrate that this penalty function method is an effective and promising approach forsolving constrained finite min-max problems.
引用
收藏
页码:253 / 270
页数:18
相关论文
共 11 条
[1]   An Interior-Point Algorithm for Nonlinear Minimax Problems [J].
Obasanjo, E. ;
Tzallas-Regas, G. ;
Rustem, B. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 144 (02) :291-318
[2]   Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management [J].
Zhu, Shushang ;
Fukushima, Masao .
OPERATIONS RESEARCH, 2009, 57 (05) :1155-1168
[3]   A smoothing trust-region Newton-CG method for minimax problem [J].
Ye, Feng ;
Liu, Hongwei ;
Zhou, Shuisheng ;
Liu, Sanyang .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (02) :581-589
[4]   Error bounds in mathematical programming [J].
Jong-Shi Pang .
Mathematical Programming, 1997, 79 :299-332
[5]  
A smooth method for the finite minimax problem[J] . G. Pillo,L. Grippo,S. Lucidi. Mathematical Programming . 1993 (1)
[6]   SUPERLINEARLY CONVERGENT ALGORITHM FOR MIN-MAX PROBLEMS [J].
POLAK, E ;
MAYNE, DQ ;
HIGGINS, JE .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 69 (03) :407-439
[7]   A REGULARIZATION METHOD FOR SOLVING THE FINITE CONVEX MIN-MAX PROBLEM [J].
GIGOLA, C ;
GOMEZ, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1621-1634
[8]  
Computational schemes for large-scale problems in extended linear-quadratic programming[J] . R. T. Rockafellar. Mathematical Programming . 1990 (1)
[9]  
A bundle type approach to the unconstrained minimization of convex nonsmooth functions[J] . Manlio Gaudioso,Maria Flavia Monaco. Mathematical Programming . 1982 (1)
[10]   A SMOOTHING-OUT TECHNIQUE FOR MIN-MAX OPTIMIZATION [J].
ZANG, I .
MATHEMATICAL PROGRAMMING, 1980, 19 (01) :61-77