Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects

被引:0
作者
Fang Deng [1 ,2 ]
Jie Chen [1 ,2 ]
Chen Chen [1 ,2 ]
机构
[1] School of Automation, Beijing Institute of Technology
[2] Key Laboratory of Intelligent Control and Decision of Complex Systems
关键词
parameter estimation; state estimation; unscented Kalman filter (UKF); strong tracking filter; wavelet transform;
D O I
暂无
中图分类号
TN713 [滤波技术、滤波器];
学科分类号
080902 ;
摘要
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
引用
收藏
页码:655 / 665
页数:11
相关论文
共 14 条
[1]  
Unscented extended Kalman filter for target tracking[J]. Changyun Liu1,2, Penglang Shui1, and Song Li2 1. National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, P. R. China;2. Missile College of Air Force Engineering University, Sanyuan 713800, P. R. China.Journal of Systems Engineering and Electronics. 2011(02)
[2]  
Pulsar/CNS integrated navigation based on federated UKF[J]. Jin Liu,Jie Ma*,and Jinwen Tian State Key Laboratory for Multi-spectral Information Processing Technologies,Institue for Pattern Recognition and artifical Intelligence,Huazhong University of Science and Technology,Wuhan 430074,P.R.China.Journal of Systems Engineering and Electronics. 2010(04)
[3]  
Online Wavelet Denoising via a Moving Window[J]. XIA Rui MENG Ke QIAN Feng WANG Zhen-Lei State-Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,P.R.China.自动化学报. 2007(09)
[4]   小波变换域估计观测噪声方差的Kalman滤波算法及其在数据融合中的应用 [J].
高羽 ;
张建秋 .
电子学报, 2007, (01) :108-111
[5]   自适应滤波方法研究 [J].
张常云 .
航空学报, 1998, (S1) :97-100
[6]   Unscented Kalman filter based nonlinear model predictive control of a LDPE autoclave reactor [J].
Jacob, Noel C. ;
Dhib, Ramdhane .
JOURNAL OF PROCESS CONTROL, 2011, 21 (09) :1332-1344
[7]  
Non-Linear State Estimation Using Derivative-Free Filters for a Three-Phase Induction Motor Model[J] . Ravikumar,Subramanian,Prakash.Australian Journal of Electrical and Electronics . 2011 (3)
[8]   ROBUST UNSCENTED KALMAN FILTERING FOR NONLINEAR UNCERTAIN SYSTEMS [J].
Xiong, K. ;
Wei, C. L. ;
Liu, L. D. .
ASIAN JOURNAL OF CONTROL, 2010, 12 (03) :426-433
[9]   Wavelet estimation by Bayesian thresholding and model selection [J].
Cinquemani, Eugenio ;
Pillonetto, Gianluigi .
AUTOMATICA, 2008, 44 (09) :2288-2297
[10]   Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation [J].
Jwo, Dah-Jing ;
Lai, Chun-Nan .
GPS SOLUTIONS, 2008, 12 (04) :249-260