BOUNDARY NULL CONTROLLABILITY OF THE HEAT EQUATION WITH WENTZELL BOUNDARY CONDITION AND DIRICHLET CONTROL

被引:0
作者
Chorfi, Salah-eddine [1 ]
Ismailov, Mansur i. [3 ,4 ]
Maniar, Lahcen [1 ,2 ]
Oner, Isil [3 ]
机构
[1] Cadi Ayyad Univ, Fac Sci Semlalia, Lab Math Modeling & Automat Syst, Dept Math,UCA, BP 2390, Marrakech, Morocco
[2] Univ Mohammed VI Polytech, Vanguard Ctr, Benguerir, Morocco
[3] Gebze Tech Univ, Dept Math, TR-41400 Gebze, Kocaeli, Turkiye
[4] Khazar Univ, Ctr Math & Its Applicat, Baku, Azerbaijan
关键词
Heat equation; Wentzell condition; null controllability; moment method; Hilbert uniqueness method; PARABOLIC EQUATIONS; OPERATORS;
D O I
10.3934/eect.2025058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We consider the linear heat equation with a Wentzell-type boundary condition and a Dirichlet control. Such a boundary condition can be reformulated as one of dynamic type. First, we formulate the boundary controllability problem of the system within the framework of boundary control systems, proving its well-posedness. Then, we reduce the question to a moment problem. Using the spectral analysis of the associated Sturm-Liouville problem and the moment method, we establish the null controllability of the system at any positive time T. Finally, we approximate minimum energy controls by a penalized HUM approach. This allows us to validate the theoretical controllability results obtained by the moment method.
引用
收藏
页数:20
相关论文
共 43 条
[1]  
Ammar-Khodja F., 2018, Evolution Equations, V439, P1
[2]  
Arendt W., 2012, Oper. Theory Adv. App., V221, P47
[3]   NULL CONTROLLABILITY FOR BACKWARD STOCHASTIC PARABOLIC CONVECTION-DIFFUSION EQUATIONS WITH DYNAMIC BOUNDARY CONDITIONS [J].
Baroun, Mahmoud ;
Boulite, Said ;
Elgrou, Abdellatif ;
Maniar, Lahcen .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2025, 15 (02) :615-639
[4]  
Boyer F., 2013, ESAIM Proceedings, V41, P15, DOI 10.1051/proc/201341002
[5]   Well-Posedness and Uniform Stability for Nonlinear Schrodinger Equations with Dynamic/Wentzell Boundary Conditions [J].
Cavalcanti, Marcelo M. ;
Correa, Wellington J. ;
Lasiecka, Irena ;
Lefler, Christopher .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (05) :1445-1502
[6]   BOUNDARY NULL CONTROLLABILITY FOR THE HEAT EQUATION WITH DYNAMIC BOUNDARY CONDITIONS [J].
Chorfi, Salah-Eddine ;
EL Guermai, Ghita ;
Khoutaibi, Abdelaziz ;
Maniar, Lahcen .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2023, 12 (02) :542-566
[7]   IMPULSE NULL APPROXIMATE CONTROLLABILITY FOR HEAT EQUATION WITH DYNAMIC BOUNDARY CONDITIONS [J].
Chorfi, Salah-Eddine ;
El Guermai, Ghita ;
Maniar, Lahcen ;
Zouhair, Walid .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2023, 13 (03) :1023-1046
[8]   Logarithmic convexity and impulsive controllability for the one-dimensional heat equation with dynamic boundary conditions [J].
Chorfi, Salah-Eddine ;
El Guermai, Ghita ;
Maniar, Lahcen ;
Zouhair, Walid .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2022, 39 (03) :861-891
[9]  
Engel K.-J., 2000, GRAD TEXT M, V194, DOI 10.1007/b97696
[10]   PHYSIOLOGICALLY STRUCTURED POPULATIONS WITH DIFFUSION AND DYNAMIC BOUNDARY CONDITIONS [J].
Farkas, Jozsef Z. ;
Hinow, Peter .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2011, 8 (02) :503-513