Asymptotic behavior of solutions of degenerate elliptic equations in half spaces

被引:0
作者
Yang, Jinjin [1 ]
Jia, Xiaobiao [2 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou, Peoples R China
[2] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic behavior; degenerate equation; half space; OPERATORS;
D O I
10.1080/17476933.2025.2544318
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by constructing two sub/super-solutions of degenerate equations and using comparison principle, we precisely reveal the influence of the right-hand term on the asymptotic behavior at infinity of solutions to a class of degenerate elliptic equations with boundary data and nonhomogeneous right-hand term.
引用
收藏
页数:11
相关论文
共 12 条
[1]  
Baouendi MS., 1966, C R Acad Sci Paris Ser A-B, V262, pA337
[2]   Fundamental solution of a higher step Grushin type operator [J].
Bauer, Wolfram ;
Furutani, Kenro ;
Iwasaki, Chisato .
ADVANCES IN MATHEMATICS, 2015, 271 :188-234
[3]  
FRANCHI B., 1983, Ann. Scuola Norm. sup. Pisa, V10, P523
[4]   UNIQUE CONTINUATION FOR A CLASS OF ELLIPTIC-OPERATORS WHICH DEGENERATE ON A MANIFOLD OF ARBITRARY CODIMENSION [J].
GAROFALO, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (01) :117-146
[5]  
Grusin V.V., 1970, Mat. Sb. (N.S.), V83, P456
[6]   The asymptotic behavior of viscosity solutions of Monge-Ampere equations in half space [J].
Jia, Xiaobiao ;
Li, Dongsheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 206
[7]   Asymptotic behavior at infinity of solutions of Monge-Ampere equations in half spaces [J].
Jia, Xiaobiao ;
Li, Dongsheng ;
Li, Zhisu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) :326-348
[8]   Asymptotic behaviors of solutions of non-divergence elliptic equations in cones [J].
Jia, Xiaobiao ;
Li, Dongsheng ;
Ma, Shanshan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) :2256-2267
[9]   Nonlinear degenerate parabolic equations for Baouendi-Grushin operators [J].
Kombe, Ismail .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (07) :756-773
[10]   Schauder estimates for degenerate Monge-Ampere equations and smoothness of the eigenfunctions [J].
Le, Nam Q. ;
Savin, Ovidiu .
INVENTIONES MATHEMATICAE, 2017, 207 (01) :389-423