Performance of Artificial Intelligence in Skin Cancer Detection: An Umbrella Review of Systematic Reviews and Meta-Analyses

被引:0
作者
Karimzadhagh, Sahand [1 ,2 ,3 ]
Ghodous, Shahriar [4 ]
Robati, Reza M. [2 ]
Abbaspour, Elahe [3 ]
Goldust, Mohamad [5 ]
Zaresharifi, Nooshin [6 ]
Zaresharifi, Shirin [2 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Med, Dept Internal Med, Tehran, Iran
[2] Shahid Beheshti Univ Med Sci, Skin Res Ctr, Tehran, Iran
[3] Guilan Univ Med Sci, Clin Res Dev Unit, Ghaem Hosp, Rasht, Iran
[4] Guilan Univ Med Sci, Student Res Comm, Sch Med, Rasht, Iran
[5] Yale Univ, Sch Med, Dept Dermatol, New Haven, CT USA
[6] Guilan Univ Med Sci, Neurosci Res Ctr, Sch Med, Rasht, Iran
关键词
accuracy; artificial intelligence; BCC; machine learning; melanoma; meta-analysis; SCC; skin cancer; SUPPORT VECTOR MACHINE; ABCD RULE; DIAGNOSIS; MELANOMA; PREDICTION; DERMATOSCOPY; DERMOSCOPY; LESIONS; NODE; TOOL;
D O I
10.1111/ijd.17981
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Skin cancer has one of the highest incidence rates among malignancies. A shortage of clinical expertise, particularly in primary care, contrasts with the promising performance of artificial intelligence (AI) models in assisting clinicians. However, a comprehensive evaluation of AI-based diagnostic accuracy across various skin cancers is essential before integration into routine clinical practice. This umbrella review synthesizes evidence from meta-analyses assessing AI model performance in skin cancer detection. We searched PubMed, Web of Science, and Embase for relevant meta-analyses published until January 28, 2025. We included 11 meta-analyses comprising 551 studies from various skin cancer types, clinical settings, and diagnostic modalities. Convolutional neural networks (CNN) and support vector machines (SVM) demonstrated the highest diagnostic performance, with CNN achieving the highest overall accuracy. AI models distinguishing melanoma from melanocytic lesions outperformed those detecting melanoma across all skin cancers, with SVM achieving the highest sensitivity (91%) and specificity (94%). For squamous cell carcinoma, machine learning models trained on hyperspectral imaging demonstrated the highest sensitivity (90.1%) and specificity (92.65%). In differentiating benign from malignant lesions, models exhibited a sensitivity of 87% and a specificity of 86.4%. AI-assisted approaches significantly improved diagnostic accuracy among all clinicians, with generalists and nurse practitioners benefiting more than experienced dermatologists. Deep learning models in primary care, trained on smartphone images, achieved higher sensitivity (90%) and specificity (85%) than general practitioners. AI models significantly outperformed junior dermatologists and nonspecialists compared to senior dermatologists. Hence, integrating AI-assisted tools into clinical workflows, particularly in primary settings, can enhance diagnostic accuracy and minimize missed cases.
引用
收藏
页数:17
相关论文
共 66 条
[1]   Early diagnosis of cutaneous melanoma - Revisiting the ABCD criteria [J].
Abbasi, NR ;
Shaw, HM ;
Rigel, DS ;
Friedman, RJ ;
McCarthy, WH ;
Osman, I ;
Kopf, AW ;
Polsky, D .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2004, 292 (22) :2771-2776
[2]   Machine learning and deep learning models for preoperative detection of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis [J].
Abbaspour, Elahe ;
Mansoori, Bahar ;
Karimzadhagh, Sahand ;
Chalian, Majid ;
Pouramini, Alireza ;
Sheida, Fateme ;
Daskareh, Mahyar ;
Haseli, Sara .
ABDOMINAL RADIOLOGY, 2025, 50 (05) :1927-1941
[3]   Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis [J].
Abbaspour, Elahe ;
Karimzadhagh, Sahand ;
Monsef, Abbas ;
Joukar, Farahnaz ;
Mansour-Ghanaei, Fariborz ;
Hassanipour, Soheil .
INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (06) :3795-3813
[4]   Deep Learning Algorithms for the Detection of Suspicious Pigmented Skin Lesions in Primary Care Settings: A Systematic Review and Meta-Analysis [J].
Abdalla, Ahmed R. ;
Hageen, Ahmed W. ;
Saleh, Haneen H. ;
Al-Azzawi, Omar ;
Ghalab, Mahmoud ;
Harraz, Amani ;
Eldoqsh, Bola S. ;
Elawady, Fatma E. ;
Alhammadi, Ayman H. ;
Elmorsy, Hesham Hassan ;
Jano, Majd ;
Elmasry, Mohamed ;
Bahbah, Eshak I. ;
Elgebaly, Ahmed .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (07)
[5]   Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis [J].
Aggarwal, Ravi ;
Sounderajah, Viknesh ;
Martin, Guy ;
Ting, Daniel S. W. ;
Karthikesalingam, Alan ;
King, Dominic ;
Ashrafian, Hutan ;
Darzi, Ara .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[6]   Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions - Comparison of the ABCD rule of dermatoscopy and a new 7-Point checklist based on pattern analysis [J].
Argenziano, G ;
Fabbrocini, G ;
Carli, P ;
De Giorgi, V ;
Sammarco, E ;
Delfino, M .
ARCHIVES OF DERMATOLOGY, 1998, 134 (12) :1563-1570
[7]   Dermoscopy of pigmented skin lesions:: Results of a consensus meeting via the Internet [J].
Argenziano, G ;
Soyer, HP ;
Chimenti, S ;
Talamini, R ;
Corona, R ;
Sera, F ;
Binder, M ;
Cerroni, L ;
De Rosa, G ;
Ferrara, G ;
Hofmann-Wellenhof, R ;
Landthater, M ;
Menzies, SW ;
Pehamberger, H ;
Piccolo, D ;
Rabinovitz, HS ;
Schiffner, R ;
Staibano, S ;
Stolz, W ;
Bartenjev, I ;
Blum, A ;
Braun, R ;
Cabo, H ;
Carli, P ;
De Giorgi, V ;
Fleming, MG ;
Grichnik, JM ;
Grin, CM ;
Halpern, AC ;
Johr, R ;
Katz, B ;
Kenet, RO ;
Kittler, H ;
Kreusch, J ;
Malvehy, J ;
Mazzocchetti, G ;
Oliviero, M ;
Özdemir, F ;
Peris, K ;
Perotti, R ;
Perusquia, A ;
Pizzichetta, MA ;
Puig, S ;
Rao, B ;
Rubegni, P ;
Saida, T ;
Scalvenzi, M ;
Seidenari, S ;
Stanganelli, I ;
Tanaka, M .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2003, 48 (05) :679-693
[8]   The role of spectrophotometry in the diagnosis of melanoma [J].
Ascierto, Paolo A. ;
Palla, Marco ;
Ayala, Fabrizio ;
De Michele, Ileana ;
Caraco, Corrado ;
Daponte, Antonio ;
Simeone, Ester ;
Mori, Stefano ;
Del Giudice, Maurizio ;
Satriano, Rocco A. ;
Vozza, Antonio ;
Palmieri, Giuseppe ;
Mozzillo, Nicola .
BMC DERMATOLOGY, 2010, 10
[9]   Computer-aided epiluminescence microscopy of pigmented skin lesions: the value of clinical data for the classification process [J].
Binder, M ;
Kittler, H ;
Dreiseitl, S ;
Ganster, H ;
Wolff, K ;
Pehamberger, H .
MELANOMA RESEARCH, 2000, 10 (06) :556-561
[10]  
Breiman L, 2001, MACH LEARN, V45, P5, DOI [10.3322/caac.21834, 10.1186/s12859-018-2419-4, 10.1016/j.rineng.2025.104079]