Shock equation of state and critical vaporization of MgSiO3 from ab initio simulations

被引:1
作者
Xu, Fei-Yang [1 ,2 ]
Li, Zhi-Guo [2 ]
Song, Hongxing [2 ]
Liu, Lei [3 ]
Geng, Huayun [2 ]
Chen, Xiang-Rong [1 ]
Hu, Jianbo [2 ]
机构
[1] Sichuan Univ, Coll Phys, Chengdu 610065, Peoples R China
[2] China Acad Engn Phys, Natl Key Lab Shock Wave & Detonat Phys, Inst Fluid Phys, Mianyang 621900, Peoples R China
[3] Southwest Univ Sci & Technol, Coll Math & Phys, Mianyang 621010, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PRESSURE; MOLECULAR-DYNAMICS; PHASE-TRANSITION; ELASTICITY; ENSTATITE; IMPACTS;
D O I
10.1103/54bx-5f2n
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Giant impacts in the final stage of planet formation could induce partial melting and vaporization of colliding bodies. However, the critical conditions required for the vaporization of constituent materials as well as the fraction of material that undergoes vaporization during such impacts remain uncertain. In this work, we present the shock equation of state and critical vaporization of MgSiO3, the most abundant mineral in the lower mantle, using first-principles molecular dynamics. The critical point of MgSiO3 is determined to be 7093 f 41 K and 0.73 f 0.05 g cm-3. The behavior of the Hugoniot curve is investigated under different initial conditions. We find that the critical shock pressure required to vaporize MgSiO3 under ambient conditions is 253 f 27 GPa, whereas a warm initial state of 1 GPa and 1500 K reduces this value to 152 f 8 GPa. The corresponding impact velocities necessary to achieve vaporization are estimated to be 9.3 km s-1for an iron projectile and 11.8 km s-1for a forsterite projectile under ambient conditions and reduce to 7.3 and 9.1 km s-1, respectively, under the warm initial state. Our findings indicate that giant impacts could vaporize a substantial portion of mantle materials, thereby facilitating compositional mixing and chemical equilibration within the mantle.
引用
收藏
页数:9
相关论文
共 67 条
[1]  
Ahrens T. J., 1972, Moon, V4, P214, DOI 10.1007/BF00562927
[2]   Shock-induced melting of MgSiO3 perovskite and implications for melts in Earth's lowermost mantle -: art. no. L14612 [J].
Akins, JA ;
Luo, SN ;
Asimow, PD ;
Ahrens, TJ .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (14) :L146121-4
[3]  
Allen M.P., 1989, Computer simulation of liquids
[4]   EQUATIONS OF STATE AND THERMODYNAMIC PROPERTIES OF ENSTATITE PYROXENES [J].
ANGEL, RJ ;
HUGHJONES, DA .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1994, 99 (B10) :19777-19783
[5]   Similar-sized collisions and the diversity of planets [J].
Asphaug, Erik .
CHEMIE DER ERDE-GEOCHEMISTRY, 2010, 70 (03) :199-219
[6]   Critical point and supercritical regime of MgO [J].
Boegels, T. F. J. ;
Caracas, R. .
PHYSICAL REVIEW B, 2022, 105 (06)
[7]   Simulations of a late lunar-forming impact [J].
Canup, RM .
ICARUS, 2004, 168 (02) :433-456
[8]   No magma ocean surface after giant impacts between rocky planets [J].
Caracas, Razvan ;
Stewart, Sarah T. .
EARTH AND PLANETARY SCIENCE LETTERS, 2023, 608
[9]   The Energy Budgets of Giant Impacts [J].
Carter, P. J. ;
Lock, S. J. ;
Stewart, S. T. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (01)
[10]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569