Short-term rainfall prediction based on radar echo using an efficient spatio-temporal recurrent unit

被引:0
作者
Wu, Dali [1 ,2 ]
Zhang, Shunli [1 ,2 ]
Zhao, Guohong [3 ]
Feng, Yongchao [1 ,2 ]
Ma, Yuan [4 ]
Zhang, Yue [5 ]
机构
[1] Qinghai Inst Technol, Sch Comp & Informat Sci, Xining 810016, Peoples R China
[2] Qinghai Inst Technol, Qinghai Prov Key Lab Big Data Finance & Artificial, Xining 810016, Peoples R China
[3] Qinghai Vocat & Tech Univ, Sch Informat Engn, Xining 810003, Peoples R China
[4] Qinghai Inst Technol, Engineer Sch, Xining 810016, Peoples R China
[5] Jiujiang Univ, Sch Comp & Big Data Sci, Jiujiang 332005, Peoples R China
基金
中国国家自然科学基金;
关键词
Radar echo extrapolation; Spatio-temporal modeling; Short-term precipitation; Deep learning; PRECIPITATION; TRACKING; NETWORK;
D O I
10.1038/s41598-025-12953-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate short-term precipitation prediction is critical for agricultural production, transportation safety, and water resource management. In this paper, we propose an Efficient Spatio-Temporal Recurrent Unit (ESTRU) for short-term precipitation prediction based on radar echoes. The ability of the model to process spatio-temporal information is enhanced by fusing two ConvGRU units while controlling the complexity. The trajectory tracking structure (TTS) facilitates the capture of rotational and scaling motions and improves the model's adaptability in complex meteorological conditions. The combined effect of the Self-Attention (SA) mechanism and convolution allows the model to focus on both global and local dependencies in spatial information, improving the clarity of the generated images. ESTRU demonstrated the best performance on the radar echo dataset compared to the other nine classical models. Quantitative and qualitative results show that ESTRU can efficiently model complex spatio-temporal relationships in radar echoes.
引用
收藏
页数:14
相关论文
共 43 条
[1]   Short-Term Precipitation Prediction for Contiguous United States Using Deep Learning [J].
Chen, Guoxing ;
Wang, Wei-Chyung .
GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (08)
[2]  
Choi S, 2019, Arxiv, DOI arXiv:1912.05288
[3]  
DIXON M, 1993, J ATMOS OCEAN TECH, V10, P785, DOI 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO
[4]  
2
[5]   A multi-scale attention encoding and dynamic decoding network designed for short-term precipitation forecasting [J].
Du, Xianjun ;
Guo, Hangfei .
EARTH SCIENCE INFORMATICS, 2025, 18 (01)
[6]   3D-UNet-LSTM: A Deep Learning-Based Radar Echo Extrapolation Model for Convective Nowcasting [J].
Guo, Shiqing ;
Sun, Nengli ;
Pei, Yanle ;
Li, Qian .
REMOTE SENSING, 2023, 15 (06)
[7]   METEO-DLNet: Quantitative Precipitation Nowcasting Net Based on Meteorological Features and Deep Learning [J].
Hu, Jianping ;
Yin, Bo ;
Guo, Chaoqun .
REMOTE SENSING, 2024, 16 (06)
[8]   CDUNet: Cloud Detection UNet for Remote Sensing Imagery [J].
Hu, Kai ;
Zhang, Dongsheng ;
Xia, Min .
REMOTE SENSING, 2021, 13 (22)
[9]   PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition [J].
Huang, Guoyan ;
Li, Xinyi ;
Zhang, Bing ;
Ren, Jiadong .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 768
[10]   Paired Satellite and NWP Precipitation for Global Flood Forecasting [J].
Huang, Zhijun ;
Wu, Huan ;
Gu, Guojun ;
Li, Xiaomeng ;
Nanding, Nergui ;
Adler, Robert F. ;
Yilmaz, Koray K. ;
Alfieri, Lorenzo ;
Chen, Sirong .
JOURNAL OF HYDROMETEOROLOGY, 2023, 24 (12) :2191-2205