Benzoic acid, an aromatic compound conventionally obtained from coal tar, can also be produced via microbial biotransformation. The shikimate pathway of Escherichia coli provides a route for the biosynthesis of aromatic acids, with its intermediates serving as valuable starting materials for the synthesis of benzoic acid derivatives. Here, we report the E. coli-based synthesis of three benzoic acid derivatives: 3,4-dihydroxybenzoic acid (protocatechuic acid, 3,4-DHBA), gallic acid (GA), and beta-glucogallin. The enzyme QuiC was used to catalyze the conversion of 3-dehydroshikimate to 3,4-DHBA. For GA production, a screening of four pobA mutants was conducted to identify the most efficient mutant. A grape-derived uridine diphosphate-dependent glucosyltransferase (UDP-GT) was utilized for the glucosylation of GA to beta-glucogallin. To improve the production titers of 3,4-DHBA and GA, a shikimate pathway gene module and a specifically engineered E. coli mutant were employed, resulting in the accumulation of 451.3 mg/L 3,4-DHBA and 123.4 mg/L GA. beta-Glucogallin synthesis was achieved through a stepwise process, wherein one E. coli strain produced GA, and its clarified culture medium was subsequently used by a second E. coli strain for beta-glucogallin formation. Optimization of the ratio between the GA-containing supernatant and the second cell culture led to a beta-glucogallin yield of 118.5 mg/L.