A Novel approach of plasma nitrocarburizing using a solid carbon active screen - A proof of concept

被引:24
作者
Burlacov I. [3 ]
Hamann S. [1 ,2 ]
Spies H.-J. [1 ,2 ]
Dalke A. [2 ]
Röpcke J. [2 ]
Biermann H. [2 ]
机构
[1] INP Greifswald, Greifswald
[2] TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, Freiberg
来源
HTM - Journal of Heat Treatment and Materials | 2017年 / 72卷 / 05期
关键词
Active screen plasma nitrocarburizing; Afterglow; Carbon-fiber reinforced carbon (CFC); Chemical sputtering; Compound layer (CL); Nitriding hardness depth (NHD); Solid-carbon-source;
D O I
10.3139/105.110334
中图分类号
学科分类号
摘要
The feasibility of a novel approach of plasma nitrocarburizing with active screen (AS) made of carbon-fiber reinforced carbon (CFC) has been demonstrated in a comparative study of two types of AS material, steel and CFC, under similar process conditions. Besides the excellent thermo-mechanical properties of the CFC material against the conventional steel, an uncontrollable sputter deposition of the steel screen material during the nitriding can be avoided by the use of the CFC material. Furthermore, a solid-carbon-source concept based on the generation of highly reactive precursor gases, in particular of the unsaturated hydrocarbons HCN and C2H2 directly in the process, avoiding external supply of gaseous hydrocarbons, has been realized in the plasma-enhanced thermochemical treatment. The high nitriding effect of the process atmosphere obtained with the CFC AS yielded a significant improvement of nitriding results for different treated steels. © Carl Hanser Verlag GmbH & Co. KG.
引用
收藏
页码:254 / 259
页数:5
相关论文
共 27 条
[1]  
Nitriding Process and Nitriding Furnace Therefore. United States Patent, 989, (1999)
[2]  
Goerges J., TC Plasma Nitriding. 12 IFHTSE Melbourne 2000 Australia 229, 28, 2, pp. 33-37, (2001)
[3]  
Spies H.-J., Burlacov I., Borner K., Biermann H., Active screen plasma nitriding and nitrocarburizing of steels: An overview, J. Int. Heat Treat. Surf. Eng, 8, 3, pp. 94-106, (2014)
[4]  
Burlacov I., Borner K., Spies H.-J., Biermann H., Progress in control of nitriding potential in ASPN process, J. Int. Heat Treat. Surf. Eng, 8, pp. 139-143, (2014)
[5]  
Ricard A., Spectroscopy of Flowing Discharges and Post-discharges in Reactive Gases, Technol Coat, 59, 1-3, pp. 67-76, (1993)
[6]  
Kolbel J., Die Nitridschichtbildung Bei der Glimmentladung, (1965)
[7]  
Edenhofer B., Physikalische und metallkundliche Vorgange beim Nitrieren im Plasma einer Glimmentladung, HTM J. Heat Treatm. Mat, 29, 2, pp. 105-112, (1974)
[8]  
Li C.X., Bell T., Dong H., A study of active screen plasma nitriding, Surface Engineering, 18, 3, pp. 174-181, (2002)
[9]  
Borner K., Spies H.-J., Burlacov I., Biermann H., Kontrolliertes Plasmanitrieren von Stahlen mit einem Aktivgitter, HTM J. Heat Treatm. Mat, 68, 3, pp. 124-132, (2013)
[10]  
Nishimoto A., Fukube T., Tanaka T., Effect of surface deposits on nitriding layer formation of active screen plasma nitriding, Mater. Trans, 57, 10, pp. 1811-1815, (2016)