Predicting mean depth and area fraction of Antarctic supraglacial melt lakes with physics-based parameterizations

被引:0
作者
Grau, Danielle [1 ]
Hussain, Azeez [2 ]
Robel, Alexander A. [1 ]
机构
[1] Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30324 USA
[2] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA USA
关键词
SURFACE MASS-BALANCE; ICE SHELVES; GREENLAND; MODEL; ROUGHNESS; HYDROLOGY; MELTWATER; GEOMETRY; DRAINAGE; ICESAT-2;
D O I
10.1038/s41467-025-61798-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the importance of supraglacial melt lakes to the future evolution of polar ice sheets, they are not represented in current large-scale climate and ice sheet models. In this study, we use ICESat-2 satellite surface elevation measurements to show that roughness on the Antarctic Ice Sheet surface is largely self-affine. Estimation of ice sheet surface roughness statistics then enables the development of a set of simple mathematical expressions parameterizing the average supraglacial melt lake area fraction and lake depth from statistical fitting of large simulation ensembles of water flow on random, self-affine surfaces. These parameterizations provide predictions that are generally consistent with observations, with some exceptions. Finally, we predict that on large portions of Antarctic ice shelves supraglacial lakes are likely to, on average, stay less than one meter deep and occupy less than 40% of the ice area, absent changes in ice shelf surface roughness.
引用
收藏
页数:13
相关论文
共 49 条
[1]  
Aizenman M., 1979, Fractals: form, chance, and dimension
[2]   Simulated Greenland Surface Mass Balance in the GISS ModelE2 GCM: Role of the Ice Sheet Surface [J].
Alexander, P. M. ;
LeGrande, A. N. ;
Fischer, E. ;
Tedesco, M. ;
Fettweis, X. ;
Kelley, M. ;
Nowicki, S. M. J. ;
Schmidt, G. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2019, 124 (03) :750-765
[3]   A framework for automated supraglacial lake detection and depth retrieval in ICESat-2 photon data across the Greenland and Antarctic ice sheets [J].
Arndt, Philipp Sebastian ;
Fricker, Helen Amanda .
CRYOSPHERE, 2024, 18 (11) :5173-5206
[4]   Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes [J].
Banwell, Alison F. ;
MacAyeal, Douglas R. ;
Sergienko, Olga V. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (22) :5872-5876
[5]   Antarctic surface hydrology and impacts on ice-sheet mass balance [J].
Bell, Robin E. ;
Banwell, Alison F. ;
Trusel, Luke D. ;
Kingslake, Jonathan .
NATURE CLIMATE CHANGE, 2018, 8 (12) :1044-1052
[6]   Assessment of ICESat-2 Ice Sheet Surface Heights, Based on Comparisons Over the Interior of the Antarctic Ice Sheet [J].
Brunt, K. M. ;
Neumann, T. A. ;
Smith, B. E. .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (22) :13072-13078
[7]   A Mathematical Model of Melt Lake Development on an Ice Shelf [J].
Buzzard, S. C. ;
Feltham, D. L. ;
Flocco, D. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2018, 10 (02) :262-283
[8]   Modelling the fate of surface melt on the Larsen C Ice Shelf [J].
Buzzard, Sammie ;
Feltham, Daniel ;
Flocco, Daniela .
CRYOSPHERE, 2018, 12 (11) :3565-3575
[9]   The volume and mean depth of Earth's lakes [J].
Cael, B. B. ;
Heathcote, A. J. ;
Seekell, D. A. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (01) :209-218
[10]   LAKE GEOMETRY - IMPLICATIONS FOR PRODUCTION AND SEDIMENT ACCRETION RATES [J].
CARPENTER, SR .
JOURNAL OF THEORETICAL BIOLOGY, 1983, 105 (02) :273-286