Running Love numbers and the Effective Field Theory of gravity

被引:0
作者
Barbosa, Sergio [1 ]
Brax, Philippe [2 ]
Fichet, Sylvain [1 ]
de Souza, Lucas [3 ]
机构
[1] Univ Fed ABC, CCNH, BR-09210580 Santo Andre, SP, Brazil
[2] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, F-91191 Gif Sur Yvette, France
[3] Univ Fed ABC, CMCC, BR-09210580 Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Exact solutions; black holes and black hole thermodynamics in GR and beyond; modified gravity; quantum field theory on curved space; YANG-MILLS; EVOLUTION; EINSTEIN;
D O I
10.1088/1475-7516/2025/07/071
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Massive states produce higher derivative corrections to Einstein gravity in the infrared, which are encoded into operators of the Effective Field Theory (EFT) of gravity. These EFT operators modify the geometry and affect the tidal properties of black holes, either neutral or charged. A thorough analysis of the perturbative tidal deformation problem leads us to introduce a tidal Green function, which we use to derive two universal formulae that efficiently provide the constant and running Love numbers induced by the EFT. We apply these formulae to determine the tidal response of EFT-corrected non-spinning black holes induced by vector and tensor fields, reproducing existing results where available and deriving new ones. We find that neutral black hole Love numbers run classically for l >= 3 while charged ones run for l >= 2. Insights from the Frobenius method and from EFT principles confirm that the Love number renormalization flow is a well-defined physical effect. We find that extremal black holes can have Love numbers much larger than neutral ones, up to O(1) within the EFT validity regime, and that the EFT cutoff corresponds to the exponential suppression of the Schwinger effect. We discuss the possibility of probing an Abelian dark sector through gravitational waves, considering a scenario in which dark-charged extremal black holes exist in the present-day Universe.
引用
收藏
页数:55
相关论文
共 141 条
[1]  
Agmon NB, 2023, Arxiv, DOI arXiv:2212.06187
[2]   Aspects of higher-curvature gravities with covariant derivatives [J].
Aguilar-Gutierrez, Sergio E. ;
Bueno, Pablo ;
Cano, Pablo A. ;
Hennigar, Robie A. ;
Llorens, Quim .
PHYSICAL REVIEW D, 2023, 108 (12)
[3]   QED positivity bounds [J].
Alberte, Lasma ;
de Rham, Claudia ;
Jaitly, Sumer ;
Tolley, Andrew J. .
PHYSICAL REVIEW D, 2021, 103 (12)
[4]   Positivity bounds and the massless spin-2 pole [J].
Alberte, Lasma ;
de Rham, Claudia ;
Jaitly, Sumer ;
Tolley, Andrew J. .
PHYSICAL REVIEW D, 2020, 102 (12)
[5]  
Ananthanarayan B, 2024, Arxiv, DOI arXiv:2408.01441
[6]   The string landscape, black holes and gravity as the weakest force [J].
Arkani-Hamed, Nima ;
Motl, Lubos ;
Nicolis, Alberto ;
Vafa, Cumrun .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (06)
[7]   Causality, unitarity, and the weak gravity conjecture [J].
Arkani-Hamed, Nima ;
Huang, Yu-tin ;
Liu, Jin-Yu ;
Remmen, Grant N. .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
[8]   The EFT-hedron [J].
Arkani-Hamed, Nima ;
Huang, Tzu-Chen ;
Huang, Yu-tin .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
[9]  
Barura CGA, 2024, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2024/09/001
[10]   Gravitational corrections to the Euler-Heisenberg Lagrangian [J].
Bastianelli, Fiorenzo ;
Davila, Jose Manuel ;
Schubert, Christian .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (03)