Monitoring Plastic Accumulations in a River Environment Using Machine Learning on Sentinel-1 SAR Data

被引:0
作者
da Costa, Tomas Soares [1 ]
Felicio, Joao M. [1 ]
Matos, Sergio A. [1 ,2 ]
Costa, Jorge R. [1 ,2 ]
Fernandes, Carlos A. [1 ]
Fonseca, Nelson J. G. [3 ,4 ]
机构
[1] Univ Lisbon, Inst Telecomun, Inst Super Tecn, P-1049001 Lisbon, Portugal
[2] Inst Univ Lisboa ISCTE IUL, P-2649026 Lisbon, Portugal
[3] European Space Agcy, NL-2200 AG Noordwijk, Netherlands
[4] Anywaves, F-31000 Toulouse, France
来源
2025 19TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP | 2025年
关键词
detection; floating macroplastics; machine learning; marine litter; polarization; propagation; Sentinel-1; SAR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Plastic litter is a growing environmental issue. Microwave (MW) technology has the potential for an all-time and weather remote detection of floating macroplastics via satellites or airborne platforms. However, none of the early studies in the existing literature has addressed MW sensor requirements or the application of Machine Learning (ML) for automated monitoring with readily available data. In this study, we employ a supervised learning workflow to monitor, in a preliminary phase, floating macroplastic accumulation in a river environment utilizing polarimetric Sentinel-1 (S-1) SAR data. The combination of co-polarization (VV) and cross-polarization (VH), specifically VV-VH and VV+VH, resulted in detection accuracies exceeding 90%, without overfitting. Analysis of scattering behavior revealed that both VV and VH backscatter were sensitive to plastic patch size, with a linear relationship. This differs from the low-intensity scattering of river water. The findings highlight the importance of dual polarization for effective MW-based plastic monitoring missions.
引用
收藏
页数:5
相关论文
共 20 条
[1]   Development of Novel Classification Algorithms for Detection of Floating Plastic Debris in Coastal Waterbodies Using Multispectral Sentinel-2 Remote Sensing Imagery [J].
Basu, Bidroha ;
Sannigrahi, Srikanta ;
Sarkar Basu, Arunima ;
Pilla, Francesco .
REMOTE SENSING, 2021, 13 (08)
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]  
Da Costa Tomas, 2024, International Journal of Microwave and Wireless Technologies
[4]  
Da Costa Tomas, 2023, 2023 17 EUR C ANT PR
[5]   Feature Selection for Identifying Optimal Microwave Frequencies to Detect Floating Macroplastic Litter in C and X bands [J].
da Costa, Tomas Soares ;
Felicio, Joao M. ;
Vala, Mario ;
Leonor, Nuno ;
Costa, Jorge R. ;
Marques, Paulo ;
Moreira, Antonio A. ;
Caldeirinha, Rafael ;
Matos, Sergio A. ;
Fernandes, Carlos A. ;
Fonseca, Nelson J. G. ;
de Maagt, Peter .
2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2024,
[6]   Review of Methods for Automatic Plastic Detection in Water Areas Using Satellite Images and Machine Learning [J].
Danilov, Aleksandr ;
Serdiukova, Elizaveta .
SENSORS, 2024, 24 (16)
[7]  
Davaasuren N., 2018, IGARSS 2018 2018 IEE
[8]   Assessing the detection of floating plastic litter with advanced remote sensing technologies in a hydrodynamic test facility [J].
de Fockert, A. ;
Eleveld, M. A. ;
Bakker, W. ;
Felicio, J. M. ;
Costa, T. S. ;
Vala, M. ;
Marques, P. ;
Leonor, N. ;
Moreira, A. ;
Costa, J. R. ;
Caldeirinha, R. F. S. ;
Matos, S. A. ;
Fernandes, C. A. ;
Fonseca, N. ;
Simpson, M. D. ;
Marino, A. ;
Gandini, E. ;
Camps, A. ;
Perez-Portero, A. ;
Gonga, A. ;
Burggraaff, O. ;
Garaba, S. P. ;
Salama, M. S. ;
Xiao, Q. ;
Calvert, R. ;
van den Bremer, T. S. ;
de Maagt, P. .
SCIENTIFIC REPORTS, 2024, 14 (01)
[9]   Feasibility of Radar-Based Detection of Floating Macroplastics at Microwave Frequencies [J].
Felicio, Joao M. ;
Costa, Tomas S. ;
Vala, Mario ;
Leonor, Nuno ;
Costa, Jorge R. ;
Marques, Paulo ;
Moreira, Antonio A. ;
Caldeirinha, Rafael F. S. ;
Matos, Sergio A. ;
Fernandes, Carlos A. ;
Fonseca, Nelson J. G. ;
de Maagt, Peter .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (03) :2766-2779
[10]  
Fung T., 1988, PHOTOGRAMM ENG REMOT, V54, P1449