Fairness in Group Recommender Systems Using Variational Autoencoders

被引:0
作者
Ali, Muhammad Shahzaib [1 ]
Stefanidis, Kostas [1 ]
机构
[1] Tampere Univ, Tampere, Finland
来源
DATABASE ENGINEERED APPLICATIONS, IDEAS 2024 | 2025年 / 15511卷
关键词
Fairness; Group Recommendations; Variational Autoencoders;
D O I
10.1007/978-3-031-83472-1_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems are integral to enhancing user experiences on platforms, like Amazon and Netflix, by providing personalized suggestions. However, these systems often face significant fairness challenges, particularly in group settings where diverse preferences must be aggregated. In this paper, we explore the use of Variational Autoencoders (VAEs) to improve fairness in group recommendations. By introducing stochastic elements into the VAE framework, we aim to generate diverse and equitable recommendations. Extensive evaluations using the MovieLens 20M dataset demonstrate that incorporating noise during the recommendation process significantly enhances fairness with a minimal impact on ranking quality. The study identifies the Hybrid aggregation method paired with uniform noise as the optimal tradeoff, balancing group satisfaction, dissatisfaction, and ranking quality.
引用
收藏
页码:297 / 311
页数:15
相关论文
共 16 条
[1]   Equity of Attention: Amortizing Individual Fairness in Rankings [J].
Biega, Asia J. ;
Gummadi, Krishna P. ;
Weikum, Gerhard .
ACM/SIGIR PROCEEDINGS 2018, 2018, :405-414
[2]   Feature-blind fairness in collaborative filtering recommender systems [J].
Borges, Rodrigo ;
Stefanidis, Kostas .
KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (04) :943-962
[3]   On Mitigating Popularity Bias in Recommendations via Variational Autoencoders [J].
Borges, Rodrigo ;
Stefanidis, Kostas .
36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, :1383-1386
[4]   Enhancing Long Term Fairness in Recommendations with Variational Autoencoders [J].
Borges, Rodrigo ;
Stefanidis, Kostas .
11TH INTERNATIONAL CONFERENCE ON MANAGEMENT OF DIGITAL ECOSYSTEMS (MEDES), 2019, :95-102
[5]  
Burke R, 2017, Arxiv, DOI arXiv:1707.00093
[6]  
Guzzi F., 2011, P ACM C REC SYST REC, P265
[7]   The MovieLens Datasets: History and Context [J].
Harper, F. Maxwell ;
Konstan, Joseph A. .
ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2016, 5 (04)
[8]  
Imtiaz W., 2020, Fairness in variational autoencoders recommenders
[9]  
Jameson A., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P596
[10]   Variational Autoencoders for Collaborative Filtering [J].
Liang, Dawen ;
Krishnan, Rahul G. ;
Hoffman, Matthew D. ;
Jebara, Tony .
WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, :689-698