Hierarchical ionic networks in polymer electrolyte boost high-voltage solid-state Li batteries with stable interfaces and long cycling

被引:0
作者
Xia, Kang [1 ]
Yao, Zhengyin [1 ]
Liu, Zhen [2 ]
Luo, Shuyue [1 ]
Xie, Haoru [1 ]
Li, Xurui [1 ]
Yao, Xiang [3 ]
Liang, Guodong [1 ]
Zhang, Peng [1 ]
机构
[1] Sun Yat sen Univ, Inst Green Chem & Mol Engn, Sch Mat Sci & Engn, Key Lab Polymer Composite & Funct Mat,Minist Educ, Guangzhou 510275, Peoples R China
[2] South China Univ Technol, Med Devices Res & Testing Ctr, Guangzhou 510006, Peoples R China
[3] JiangSu CheeShine Performance Mat Co Ltd, Huaian 223200, Peoples R China
来源
NANO RESEARCH ENERGY | 2025年
基金
中国国家自然科学基金;
关键词
solid-state lithium metal batteries; polymer electrolyte; hierarchical ionic networks; interfacial stability; high-voltage cycling; stability;
D O I
10.26599/NRE.2025.9120181
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solid-state lithium metal batteries (SLMBs) require quasi solid polymer electrolytes (QSSPEs) with high ionic conductivity, interfacial stability, and oxidative resistance. In this study, a QSSPE membrane (MP46, MG30:LiTFSI:succinonitrile=10:4:6 by weight) with a wide electrochemical window of 5.1 V is designed to address these challenges. Complementary infrared spectroscopy, small-angle X-ray scattering and electron microscopy analysis reveals a hierarchical ionic conductive network, comprising sphere-like nanostructures embedded in microphase-segregated architectures. This architecture enhances lithium-ion transport while maintaining mechanical integrity. The strong interfacial adhesion of MP46 with lithium metal supports stable lithium plating and stripping for over 800 h at 0.2 mA<middle dot>cm-2, mitigating dendrite formation. When paired with LiFePO4 and LiCoO2 cathodes, MP46 sustains prolonged cycling, with capacity retention of 80.1% after 1400 cycles at 2 C and 92.1% after 200 cycles at 4.5 V, respectively. Pouch-type cells further demonstrate mechanical flexibility and operational safety under deformation. These results indicate that MP46 enables stable high-energy-density SLMBs, providing insights into the design of next-generation polymer electrolytes.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Investigation on modified natural rubber gel polymer electrolytes for lithium polymer battery [J].
Ali, A. M. M. ;
Subban, R. H. Y. ;
Bahron, H. ;
Yahya, M. Z. A. ;
Kamisan, A. S. .
JOURNAL OF POWER SOURCES, 2013, 244 :636-640
[2]   Recent progress of composite polyethylene separators for lithium/ sodium batteries [J].
Babiker, Dafaalla M. D. ;
Usha, Zubaida Rukhsana ;
Wan, Caixia ;
Hassaan, Mohmmed Mun ELseed ;
Chen, Xin ;
Li, Liangbin .
JOURNAL OF POWER SOURCES, 2023, 564
[3]   Are Polymer-Based Electrolytes Ready for High-Voltage Lithium Battery Applications? An Overview of Degradation Mechanisms and Battery Performance [J].
Cabanero Martinez, Maria Angeles ;
Boaretto, Nicola ;
Naylor, Andrew J. ;
Alcaide, Francisco ;
Salian, Girish D. ;
Palombardini, Flavia ;
Ayerbe, Elixabete ;
Borras, Mateu ;
Casas-Cabanas, Montserrat .
ADVANCED ENERGY MATERIALS, 2022, 12 (32)
[4]   Nonflammable Succinonitrile-Based Deep Eutectic Electrolyte for Intrinsically Safe High-Voltage Sodium-Ion Batteries [J].
Chen, Jian ;
Yang, Zhuo ;
Xu, Xu ;
Qiao, Yun ;
Zhou, Zhiming ;
Hao, Zhiqiang ;
Chen, Xiaomin ;
Liu, Yang ;
Wu, Xingqiao ;
Zhou, Xunzhu ;
Li, Lin ;
Chou, Shu-Lei .
ADVANCED MATERIALS, 2024, 36 (28)
[5]   Polymer-coated silica dual functional fillers to improve the performance of poly(ethylene oxide)-based solid electrolytes [J].
Chen, Zehan ;
Jia, He ;
Yan, Shanshan ;
Gohy, Jean-Francois .
NANO ENERGY, 2023, 114
[6]   Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries [J].
Diederichsen, Kyle M. ;
McShane, Eric J. ;
McCloskey, Bryan D. .
ACS ENERGY LETTERS, 2017, 2 (11) :2563-2575
[7]   Breaking the Trade-Off between Ionic Conductivity and Mechanical Strength in Solid Polymer Electrolytes for High-Performance Solid Lithium Batteries [J].
Du, Ao ;
Lu, Haotian ;
Liu, Sisi ;
Chen, Shuoyi ;
Chen, Zihui ;
Li, Wenhao ;
Song, Jianwei ;
Yang, Quan-Hong ;
Yang, Chunpeng .
ADVANCED ENERGY MATERIALS, 2024, 14 (31)
[8]   In Situ Constructing Robust Interface by Deep Eutectic Polymeric Electrolyte Enables High Performance Lithium Metal Batteries with High-Loading Cathode [J].
Fang, Zixuan ;
Zhang, Ming ;
Zhang, Zhihao ;
Li, Jitao ;
Peng, Haofeng ;
Wu, Jintian ;
Zhou, Haiping ;
Xu, Ziqiang ;
Wu, Mengqiang .
ADVANCED SCIENCE, 2024, 11 (47)
[9]   Ultra-thin and high-voltage-stable Bi-phasic solid polymer electrolytes for high-energy-density Li metal batteries [J].
Gong, Yiqi ;
Wang, Changhong ;
Xin, Mingyang ;
Chen, Silin ;
Xu, Pingbo ;
Li, Dan ;
Liu, Jia ;
Wang, Yintong ;
Xie, Haiming ;
Sun, Xueliang ;
Liu, Yulong .
NANO ENERGY, 2024, 119
[10]   Fluorine-Containing Phase-Separated Polymer Electrolytes Enabling High-Energy Solid-State Lithium Metal Batteries [J].
Han, Junghun ;
Lee, Michael J. ;
Min, Ju Hong ;
Kim, Keun Hee ;
Lee, Kyungbin ;
Kwon, Seung Ho ;
Park, Jinseok ;
Ryu, Kun ;
Seong, Hyeonseok ;
Kang, Hyewon ;
Lee, Eunji ;
Lee, Seung Woo ;
Kim, Bumjoon J. .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (19)