Remodeling Tau and Prion Proteins Using Nanochaperons

被引:7
作者
Bhattacharyya S. [1 ,4 ]
Kim K. [1 ]
Teizer W. [1 ,2 ,3 ]
机构
[1] WPI-Advanced Institute for Materials Research, Tohoku University, Sendai
[2] Department of Physics and Astronomy, Texas A&M University, College Station, 77843, TX
[3] Department of Materials Science and Engineering, Texas A&M University, College Station, 77843, TX
[4] Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing
关键词
Alzheimer's patient samples; gold nanoparticles; particle dynamics; protein folding; restoring kinesin processivity;
D O I
10.1002/adbi.201700108
中图分类号
学科分类号
摘要
There is increasing evidence that tau protein behaves in a prion-like manner in tauopathy. The stabilization of tau protein using a small molecular compound can limit tauopathy associated morbidity that advances with ageing. Here, a lab-on-a-chip experiment is reported, where gold citrate nanoparticles (5 nm, AuNPs) can remodel mutant tau protein (P301L) and prion, thus resolving the mutant tau- and prion-mediated impairment of kinesin cargo transport on microtubules. It is found that tau protein is overexpressed in Alzheimer's disease (AD) patient serum samples and the tau conformational change can also be affected in human serum samples of AD when treated with AuNPs ex vivo. Similarly, AuNPs reorganizing the prion protein and inducing conformational changes of prions in AD serum have been observed, while having no effect on alpha-synuclein in Parkinson patient serum. The mapping of AD serum mediated traffic jams, using particle tracking and mean square displacement analysis, and the observed recovery of uninterrupted processive motor functions by AuNP treatment show that kinesin cargo assays might be a useful method for future ex vivo validation of a targeted therapy against tauopathy before administration, a viable option to combat various neurodegenerative disorders arising from the susceptibility of amyloidogenic proteins toward aggregation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
相关论文
共 40 条
[1]  
Wang Y., Mandelkow E., Nat. Rev. Neurosci., 17, (2016)
[2]  
Trojanowski J.Q., Lee V.M.Y., Nat. Neurosci., 8, (2005)
[3]  
Eisele Y.S., Monteiro C., Fearns C., Encalada S.E., Wiseman R.L., Powers E.T., Kelly J.W., Nat. Rev. Drug Discovery, 14, (2015)
[4]  
Morimoto R.I., Cuervo A.M., J. Gerontol., A, 69, (2014)
[5]  
Ben-Zvi A., Miller E.A., Morimoto R.I., Proc. Natl. Acad. Sci. USA, 106, (2009)
[6]  
Peeraer E., Bottelbergs A., Van Kolen K., Stancu I.C., Vasconcelos B., Mahieu M., Duytschaever H., Ver Donck L., Torremans A., Sluydts E., Van Acker N., Kemp J.A., Mercken M., Brunden K.R., Trojanowski J.Q., Dewachter I., Lee V.M., Moechars D., Neurobiol. Dis., 73, (2015)
[7]  
Michel C.H., Kumar S., Pinotsi D., Tunnacliffe A., St George-Hyslop P., Mandelkow E., Mandelkow E.M., Kaminski C.F., Schierle G.S.K., J. Biol. Chem., 289, (2014)
[8]  
Karch C.M., Jeng A.T., Goate A.M., J. Biol. Chem., 287, (2012)
[9]  
Smith L.K., He Y., Park J.S., Bieri G., Snethlage C.E., Lin K., Gontier G., Wabl R., Plambeck K.E., Udeochu J., Wheatley E.G., Bouchard J., Eggel A., Narasimha R., Grant J.L., Luo J., Wyss-Coray T., Villeda S.A., Nat. Med., 21, (2015)
[10]  
Bhattacharyya S., Kim K., Teizer W., Adv. Biosyst., 1, (2017)