A NONLINEAR HENSTOCK-TYPE INTEGRAL FOR RIESZ SPACE-VALUED FUNCTIONS

被引:0
作者
Fatkhurrohman, Muhammad [1 ]
Tantrawan, Made [1 ]
机构
[1] Univ Gadjah Mada, Fac Math & Nat Sci, Dept Math, Yogyakarta 55281, Indonesia
来源
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 2025年 / 17卷 / 02期
关键词
nonlinear integral; Henstock integral; Riesz space;
D O I
10.54671/BMAA-2025-2-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a nonlinear extension of the Henstock integral for functions taking values in a Riesz space. By combining the conditions provided in Lee (1989) for the real case with Fremlins (D)-double sequence technique, we establish several fundamental properties of the integral, including a Cauchy-type criterion and the integrability of step functions and (D)-continuous functions. Furthermore, we demonstrate that the SaksHenstock lemma holds for this integral and prove the absolute (D)-continuity of its primitive.
引用
收藏
页码:26 / 39
页数:14
相关论文
共 14 条
[1]  
Aliprantis CharalambosD., 2003, LOCALLY SOLID RIESZ
[2]  
Bartle R.G., 2001, A Modern Theory of Integration
[3]  
Boccuto A., 1998, Tatra Mt. Math. Publ., V14
[4]  
Boccuto A., 2009, Kurzweil-Henstock Integral in Riesz spaces
[5]  
Boccuto A., 2003, Real Anal. Exchange, V29
[6]  
Chew T.S., 1986, P AN C SING, V23, P57
[7]  
ee P.Y., 2000, The Integral: An Easy Approach after Kurzweil and Henstock
[8]   DIRECT PROOF OF MATTHES-WRIGHT INTEGRAL EXTENSION THEOREM [J].
FREMLIN, DH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 11 (OCT) :276-284
[9]  
Gordon R., 1994, INTEGRALS LEBESGUE D
[10]  
Lee P., 1989, Lanzhou lectures on henstock integration