Generalized Jordan derivations of unital algebras

被引:0
作者
Benkovic, Dominik [1 ,2 ]
Grasic, Mateja [1 ,2 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor 2000, Slovenia
[2] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
Jordan derivation; derivation; Jordan centralizer; centralizer; unital algebra;
D O I
10.2298/FIL2512003B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a unital algebra over a field F with char(F) not equal 2. In this paper we introduce a new concept of a generalized Jordan derivation, covering Jordan centralizers and Jordan derivations, as follows: a linear map f : A -> A is a generalized Jordan derivation if there exist linear maps y; h : A -> A such that f (x) o y + x o y (y) = h (x o y) for all x, y E A (here x o y = xy + yx). Our aim is to give the form of map f in terms of the so called quasi Jordan centralizers and quasi Jordan derivations. In addition, a characterization of such maps is presented.
引用
收藏
页码:4003 / 4012
页数:10
相关论文
共 15 条
[2]  
BRESAR M, 1988, P AM MATH SOC, V104, P1003
[3]   Jordan {g, h}-derivations on tensor products of algebras [J].
Bresar, Matej .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (11) :2199-2207
[4]   Commuting maps of triangular algebras [J].
Cheung, WS .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 :117-127
[5]   JORDAN DERIVATIONS ON RINGS [J].
CUSACK, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (02) :321-324
[6]  
Herstein IN, 1957, P AM MATH SOC, V8, P1104, DOI [10.1090/S0002-9939-1957-0095864-2, DOI 10.1090/S0002-9939-1957-0095864-2]
[7]   Generalized Jordan derivation on nest algebras [J].
Hou, Jinchuan ;
Qi, Xiaofei .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (5-6) :1479-1485
[8]   JORDAN HOMOMORPHISMS OF RINGS [J].
JACOBSON, N ;
RICKART, CE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 69 (NOV) :479-502
[9]   Generalized Jordan derivations on prime rings and standard operator algebras [J].
Jing, W ;
Lu, SJ .
TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (04) :605-613
[10]   Generalized derivations of Lie algebras [J].
Leger, GF ;
Luks, EM .
JOURNAL OF ALGEBRA, 2000, 228 (01) :165-203