Regular Fuzzy Graphs with Chromatic Numbers

被引:0
作者
Kolandasamy, Renuka [1 ]
Ramesh, D. [1 ]
Iampan, Aiyared [2 ]
Rao, Gadde Sambasiva [3 ]
Jayanti, Sravani [1 ]
Abdulkadhar, Sabenabanu [4 ]
机构
[1] Koneru Lakshmaiah Educ Fdn, Coll Engn, Dept Engn Math, Vaddeswaram 522302, Andhra Prades, India
[2] Univ Phayao, Sch Sci, Dept Math, Mueang 56000, Phayao, Thailand
[3] Sree Dattha Grp Inst, Dept Math, Ranga Reddy 501510, Telangana, India
[4] Koneru Lakshmaiah Educ Fdn, Dept Comp Sci & Applicat, Vaddeswaram 522302, Andhra Prades, India
关键词
chromatic number; regular fuzzy graph; fuzzy graph;
D O I
10.28924/2291-8639-23-2025-173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (sigma, mu) be a fuzzy graph on G"= (V, E). If each vertex in G has the same degree k, then G is said to be a vertex regular fuzzy graph or a k-vertex regular fuzzy graph. The minimum number of colors required to color all the vertices in such a way that no two adjacent vertices receive the same color is called the chromatic number and is denoted by chi(G). In this paper, we present results based on cubic graphs and their chromatic number with regular fuzzy graphs, which are briefly denoted by f r(G).
引用
收藏
页数:16
相关论文
共 12 条
[1]  
Omrani MA, 2019, Research in Computing Science, V148, P499, DOI [10.13053/rcs-148-8-38, 10.13053/rcs-148-8-38, DOI 10.13053/RCS-148-8-38]
[2]  
Chartrand Gary., 2005, Graphs digraphs, DOI DOI 10.1201/B19731
[3]   [1,2]-sets in graphs [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. ;
McRae, Alice .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) :2885-2893
[4]   On the chromatic number of random regular graphs [J].
Coja-Oghlan, Amin ;
Efthymiou, Charilaos ;
Hetterich, Samuel .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 :367-439
[5]  
Gani A. N., 2008, Journal of Physical Science, V12, P33
[6]  
Kolandasamy R., 2022, J. Algebr. Stat., V13, P1982
[7]  
Mahadevan G, 2019, COMMUN FAC SCI UNIV, V68, P2298
[8]  
Mahadevan G., 2017, Int. J. Comput. Appl. Math., V12, P281
[9]  
Radha K., 2014, Int. J. Math. Arch., V5, P100
[10]  
Rosenfeld A., 1975, Fuzzy graphs