A novel segmentation-based deep learning model for enhanced scaphoid fracture detection

被引:0
作者
Butzow, A. [1 ,2 ]
Anttila, T. T. [1 ,2 ]
Haapamaki, V. [2 ,3 ]
Ryhanen, J. [1 ,2 ]
机构
[1] Univ Helsinki, Dept Musculoskeletal & Plast Surg, Hartmaninkatu 4, Helsinki 00029, Finland
[2] Helsinki Univ Hosp, Hartmaninkatu 4, Helsinki 00029, Finland
[3] Univ Helsinki, Dept Radiol, Hartmaninkatu 4, Helsinki 00029, Finland
关键词
Scaphoid; Fracture; Artificial intelligence; Deep learning; Radiograph; VALIDATION; ALGORITHM;
D O I
10.1016/j.ejrad.2025.112309
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop a deep learning model to detect apparent and occult scaphoid fractures from plain wrist radiographs and to compare the model's diagnostic performance with that of a group of experts. Materials and methods: A dataset comprising 408 patients, 410 wrists, and 1011 radiographs was collected. 718 of these radiographs contained a scaphoid fracture, verified by magnetic resonance imaging or computed tomography scans. 58 of these fractures were occult. The images were divided into training, test, and occult fracture test sets. The images were annotated by marking the scaphoid bone and the possible fracture area. The performance of the developed DL model was compared with the ground truth and the assessments of three clinical experts. Results: The DL model achieved a sensitivity of 0.86 (95 % CI: 0.75-0.93) and a specificity of 0.83 (0.64-0.94). The model's accuracy was 0.85 (0.76-0.92), and the area under the receiver operating characteristics curve was 0.92 (0.86-0.97). The clinical experts' sensitivity ranged from 0.77 to 0.89, and specificity from 0.83 to 0.97. The DL model detected 24 of 58 (41 %) occult fractures, compared to 10.3 %, 13.7 %, and 6.8 % by the clinical experts. Conclusion: Detecting scaphoid fractures using a segmentation-based DL model is feasible and comparable to previously developed DL models. The model performed similarly to a group of experts in identifying apparent scaphoid fractures and demonstrated higher diagnostic accuracy in detecting occult fractures. The improvement in occult fracture detection could enhance patient care.
引用
收藏
页数:7
相关论文
共 29 条
[1]  
ALTMAN DG, 2000, STAT CONFIDENCE CONF
[2]   Systematic Review of Diagnosis of Clinically Suspected Scaphoid Fractures [J].
Backer, Henrik Constantin ;
Wu, Chia H. ;
Strauch, Robert J. .
JOURNAL OF WRIST SURGERY, 2020, 9 (01) :81-89
[3]   Detection and localization of distal radius fractures: Deep learning system versus radiologists [J].
Bluethgen, Christian ;
Becker, Anton S. ;
de Martini, Ilaria Vittoria ;
Meier, Andreas ;
Martini, Katharina ;
Frauenfelder, Thomas .
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 126
[4]  
Dean BJF, 2024, BONE JOINT J, V106B, P387, DOI [10.1302/0301-620X.106B4.BJJ-2023-1171.R1$2.00, 10.1302/0301-620X.106B4.BJJ-2023-1171.R1]
[5]   Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments [J].
Gan, Kaifeng ;
Xu, Dingli ;
Lin, Yimu ;
Shen, Yandong ;
Zhang, Ting ;
Hu, Keqi ;
Zhou, Ke ;
Bi, Mingguang ;
Pan, Lingxiao ;
Wu, Wei ;
Liu, Yunpeng .
ACTA ORTHOPAEDICA, 2019, 90 (04) :394-400
[6]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[7]   Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist [J].
Hendrix, Nils ;
Hendrix, Ward ;
van Dijke, Kees ;
Maresch, Bas ;
Maas, Mario ;
Bollen, Stijn ;
Scholtens, Alexander ;
de Jonge, Milko ;
Ong, Lee-Ling Sharon ;
van Ginneken, Bram ;
Rutten, Matthieu .
EUROPEAN RADIOLOGY, 2023, 33 (03) :1575-1588
[8]   Development and Validation of a Convolutional Neural Network for Automated Detection of Scaphoid Fractures on Conventional Radiographs [J].
Hendrix, Nils ;
Scholten, Ernst ;
Vernhout, Bastiaan ;
Bruijnen, Stefan ;
Maresch, Bas ;
de Jong, Mathijn ;
Diepstraten, Suzanne ;
Bollen, Stijn ;
Schalekamp, Steven ;
de Rooij, Maarten ;
Scholtens, Alexander ;
Hendrix, Ward ;
Samson, Tijs ;
Ong, Lee-Ling Sharon ;
Postma, Eric ;
van Ginneken, Bram ;
Rutten, Matthieu .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (04)
[9]   Epidemiology of scaphoid fractures and non-unions: A systematic review [J].
Jorgsholm, Peter ;
Ossowski, Daniel ;
Thomsen, Niels ;
Bjorkman, Anders .
HANDCHIRURGIE MIKROCHIRURGIE PLASTISCHE CHIRURGIE, 2020, 52 (05) :374-381
[10]   Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks [J].
Kim, D. H. ;
MacKinnon, T. .
CLINICAL RADIOLOGY, 2018, 73 (05) :439-445