OPERATOR ALGEBRAS OVER THE p-ADIC INTEGERS

被引:0
作者
Buss, Alcides [1 ]
Garcia, Luiz felipe [2 ]
Mukherjee, Devarshi [3 ]
机构
[1] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, Brazil
[2] Univ Fed Santa Catarina, Posgrad Matemat, BR-88040900 Florianopolis, SC, Brazil
[3] Westfal Wilhelms Univ Munster, Math Munster, Einsteinstr 62, D-48149 Munster, Germany
关键词
Operator algebras; p-adic integers; K-theory; local cyclic homology; K-THEORY; CYCLIC HOMOLOGY;
D O I
10.1090/tran/9474
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce p-adic operator algebras, which are nonarchimedean analogues of C & lowast;-algebras. We demonstrate that various classical examples of operator algebras-such as group(oid) C & lowast;-algebras-have nonarchimedean counterparts. The category of p-adic operator algebras exhibits similar properties to those of the category of real and complex C & lowast;-algebras, featuring limits, colimits, tensor products, crossed products and an enveloping construction permitting us to construct p-adic operator algebras from involutive algebras over Zp. In several cases of interest, the enveloping algebra construction recovers the p-adic completion of the underlying Zp-algebra. We then discuss an analogue of topological K-theory for Banach Zp-algebras, and compute it in basic examples such as the p-adic Cuntz algebra and rotation algebras. Finally, for a large class of p-adic operator algebras, we show that our K-theory coincides with the reduction mod p of Quillen's algebraic K-theory.
引用
收藏
页数:57
相关论文
共 54 条
[1]  
Abrams G, 2008, HOUSTON J MATH, V34, P423
[2]   TENSOR PRODUCTS OF LEAVITT PATH ALGEBRAS [J].
Ara, Pere ;
Cortinas, Guillermo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (08) :2629-2639
[3]  
Ara P, 2009, MUENSTER J MATH, V2, P5
[4]  
Arveson W., 1976, GRADUATE TEXTS MATH, V39
[5]  
Bambozzi F, 2024, B IRAN MATH SOC, V50, DOI 10.1007/s41980-024-00879-8
[6]   HOMOTOPY EPIMORPHISMS AND DERIVED TATE'S ACYCLICITY FOR COMMUTATIVE C*-ALGEBRAS [J].
Bambozzi, Federico ;
Mihara, Tomoki .
QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (02) :421-458
[7]  
Ben-Bassat O, 2023, THEOR APPL CATEG, V39, P207
[8]  
Ben-Bassat O, 2017, Annales de la faculté des sciences de Toulouse Mathématiques, V26, P49, DOI [10.5802/afst.1526, 10.5802/afst.1526, DOI 10.5802/AFST.1526]
[9]  
Berkovich V., 1990, Mathematical Surveys and Monographs, P33, DOI DOI 10.1090/SURV/033
[10]   The interplay between Steinberg algebras and skew rings [J].
Beuter, Viviane Maria ;
Goncalves, Daniel .
JOURNAL OF ALGEBRA, 2018, 497 :337-362