Pseudo-differential operators on compact groupoids

被引:0
作者
Sridharan, K. N. [1 ]
Kumar, N. Shravan [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Groupoids; Pseudo-differential operators; Hilbert-Schmidt operators; Trace class operators; TANNAKA-KREIN DUALITY; REPRESENTATION; ALGEBRA; TRACES;
D O I
10.1007/s11868-025-00724-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define pseudo-differential operators with symbols and characterise Hilbert-Schmidt pseudo-differential operators on a second countable compact Hausdorff groupoid G. A characterisation of trace-class pseudo-differential operators and a trace formula is also provided.
引用
收藏
页数:11
相关论文
共 17 条
[1]   Tannaka-Krein duality for compact groupoids I, representation theory [J].
Amini, Massoud .
ADVANCES IN MATHEMATICS, 2007, 214 (01) :78-91
[2]  
Amini M, 2010, OPER MATRICES, V4, P573
[3]  
Bos R.D, 2007, Groupoids in geometric quantization
[4]  
Bos R, 2011, HOUSTON J MATH, V37, P807
[5]  
Chen Z, 2013, J PSEUDO-DIFFER OPER, V4, P13, DOI 10.1007/s11868-013-0061-5
[6]   Hilbert-Schmidt and Trace class pseudo-differential operators on the abstract Heisenberg group [J].
Dasgupta, Aparajita ;
Kumar, Vishvesh .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
[7]  
HAHN P, 1978, T AM MATH SOC, V242, P1
[8]  
Hormander L., 1983, Grundlehren, V257
[9]   AN ALGEBRA OF PSEUDO-DIFFERENTIAL OPERATORS [J].
KOHN, JJ ;
NIRENBER.L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1965, 18 (1-2) :269-&
[10]   Trace class and Hilbert-Schmidt pseudo differential operators on step two nilpotent Lie groups [J].
Kumar, Vishvesh ;
Mondal, Shyam Swarup .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 171