Classification of generalized torsion elements of order two in 3-manifold groups

被引:0
作者
Himeno, Keisuke [1 ]
Motegi, Kimihiko [2 ]
Teragaito, Masakazu [3 ]
机构
[1] Hiroshima Univ, Grad Sch Adv Sci & Engn, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan
[2] Nihon Univ, Dept Math, 3-25-40 Sakurajosui,Setagaya Ku, Tokyo 1568550, Japan
[3] Hiroshima Univ, Dept Math Educ, 1-1-1 Kagamiyama, Higashihiroshima, Hiroshima 7398524, Japan
关键词
3-manifold group; Generalized torsion element; Unique root property; R-group; DECOMPOSITION; SURFACES;
D O I
10.1016/j.topol.2025.109352
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a group and g a non-trivial element in G. If some non-empty finite product of conjugates of g equals to the identity, then g is called a generalized torsion element. The minimum number of conjugates in such a product is called the order of g. We will classify 3-manifolds M, each of whose fundamental group has a generalized torsion element of order two. Furthermore, we will classify such elements in pi 1(M). We also prove that R-group and R-group coincide for 3-manifold groups, and classify 3-manifold groups which are R-groups (and hence R-groups). (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:17
相关论文
共 26 条
[1]  
Aschenbrenner M, 2015, EMS SER LECT MATH, P1, DOI 10.4171/154
[2]   On abstract commensurators of groups [J].
Bartholdi, L. ;
Bogopolski, O. .
JOURNAL OF GROUP THEORY, 2010, 13 (06) :903-922
[3]  
BAVARD C, 1991, ENSEIGN MATH, V37, P109
[4]   Orderable 3-manifold groups [J].
Boyer, S ;
Rolfsen, D ;
Wiest, B .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (01) :243-+
[5]  
Calegari D., 2009, MSJ MEMOIRS, V20
[6]  
Chen L, 2020, Arxiv, DOI arXiv:1910.14146
[7]   SPECTRAL GAP OF SCL IN FREE PRODUCTS [J].
Chen, Lvzhou .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (07) :3143-3151
[8]   Ordered groups, eigenvalues, knots, surgery and L-spaces [J].
Clay, Adam ;
Rolfsen, Dale .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 152 :115-129
[9]  
Das A, 2025, Arxiv, DOI arXiv:2403.01541
[10]   (R)over-bar-Groups [J].
Fay, TH ;
Walls, GL .
JOURNAL OF ALGEBRA, 1999, 212 (01) :375-393