Understanding of chlorine incorporation in wide-bandgap perovskites for efficient and stable solar cells

被引:0
作者
Zhao, Xiaoni [1 ,2 ]
Yang, Haoran [3 ,4 ]
Cheng, Yuanhang [3 ,4 ]
Liu, Shengzhong [1 ,5 ]
Fang, Zhimin [2 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Appl Surface & Colloid Chem, Shaanxi Key Lab Adv Energy Devices,Minist Educ, Xian 710119, Peoples R China
[2] Yangzhou Univ, Inst Technol Carbon Neutralizat, Yangzhou 225127, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch New Energy, Jiangyin 214443, Peoples R China
[4] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[5] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Photoelect Convers & Utilizat Solar Energy, Dalian 116023, Peoples R China
来源
NANO RESEARCH ENERGY | 2025年
基金
中国国家自然科学基金;
关键词
wide-bandgap; perovskite solar cell; triple halide; chloride additive; crystallization; GAP PEROVSKITES; HALIDE PEROVSKITES; SEGREGATION;
D O I
10.26599/NRE.2025.9120172
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cl-based salts are magical additives to control the perovskite crystallization and enhance film morphology. Especially for the I/Br halide wide-bandgap (WBG) perovskites, alloying Cl to form triple halide perovskites can effectively enhance their optoelectronic characteristics. However, the alloying mechanism of Cl into the I/Br-based perovskite lattice remains unclear. Here, we conduct a systematic in-situ photoluminescence (PL) exploration on the crystallization processes of I/Brbased WBG with Cl-based additives including MACl and PbCl2. The results reveal that only the Cl from PbCl2 is easy to incorporate into the I/Br-based perovskite lattice structure at the initial stage of perovskite nucleation. However, PbCl2 incorporation results in the precipitation of excess PbI2, which leads to unfavorable charge transport and decreased photostability. With co-incorporation of MACl and CsCl, the transition of crystal orientation during the annealing process is effectively regulated, significantly eliminating the accumulation of excess PbI2. This improvement enhances phase homogeneity and reduces defect density. Consequently, the optimized WBG perovskite solar cell achieves a high efficiency of 21.58%, which is the highest value for 1.68 eV perovskite with bromine content lower than 10%. In addition, the operational stability is significantly enhanced, along with ameliorated burn-in aging behavior.
引用
收藏
页数:12
相关论文
共 56 条
[31]   A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells [J].
McMeekin, David P. ;
Sadoughi, Golnaz ;
Rehman, Waqaas ;
Eperon, Giles E. ;
Saliba, Michael ;
Hoerantner, Maximilian T. ;
Haghighirad, Amir ;
Sakai, Nobuya ;
Korte, Lars ;
Rech, Bernd ;
Johnston, Michael B. ;
Herz, Laura M. ;
Snaith, Henry J. .
SCIENCE, 2016, 351 (6269) :151-155
[32]   Anti-Solvent-Free Preparation for Efficient and Photostable Pure-Iodide Wide-Bandgap Perovskite Solar Cells [J].
Nie, Ting ;
Fang, Zhimin ;
Yang, Tinghuan ;
Zhao, Kui ;
Ding, Jianning ;
Liu, Shengzhong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (17)
[33]   Amino-acid-type alkylamine additive for high-performance wide-bandgap perovskite solar cells [J].
Nie, Ting ;
Yang, Junjie ;
Fang, Zhimin ;
Xu, Zhuo ;
Ren, Xiaodong ;
Guo, Xu ;
Chen, Tao ;
Liu, Shengzhong .
CHEMICAL ENGINEERING JOURNAL, 2023, 468
[34]   Recent Advances in Wide-Bandgap Organic-Inorganic Halide Perovskite Solar Cells and Tandem Application [J].
Nie, Ting ;
Fang, Zhimin ;
Ren, Xiaodong ;
Duan, Yuwei ;
Liu, Shengzhong .
NANO-MICRO LETTERS, 2023, 15 (01)
[35]   Crystallization Enhancement and Ionic Defect Passivation in Wide-Bandgap Perovskite for Efficient and Stable All-Perovskite Tandem Solar Cells [J].
Qiao, Liang ;
Ye, Tianshi ;
Wang, Pengshuai ;
Wang, Tao ;
Zhang, Lin ;
Sun, Ruitian ;
Kong, Weiyu ;
Yang, Xudong .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (07)
[36]   Dipolar Chemical Bridge Induced CsPbI3 Perovskite Solar Cells with 21.86 % Efficiency [J].
Qiu, Junming ;
Mei, Xinyi ;
Zhang, Mingxu ;
Wang, Guoliang ;
Zou, Shengwen ;
Wen, Long ;
Huang, Jianmei ;
Hua, Yong ;
Zhang, Xiaoliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (18)
[37]  
Quane D., J.
[38]   Cs4PbI6-Mediated Synthesis of Thermodynamically Stable FA0.15Cs0.85PbI3Perovskite Solar Cells [J].
Shao, Zhipeng ;
Meng, Hongguang ;
Du, Xiaofan ;
Sun, Xiuhong ;
Lv, Peiliang ;
Gao, Caiyun ;
Rao, Yi ;
Chen, Chen ;
Li, Zhipeng ;
Wang, Xiao ;
Cui, Guanglei ;
Pang, Shuping .
ADVANCED MATERIALS, 2020, 32 (30)
[39]   Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells [J].
Shen, Xinyi ;
Gallant, Benjamin M. ;
Holzhey, Philippe ;
Smith, Joel A. ;
Elmestekawy, Karim A. ;
Yuan, Zhongcheng ;
Rathnayake, P. V. G. M. ;
Bernardi, Stefano ;
Dasgupta, Akash ;
Kasparavicius, Ernestas ;
Malinauskas, Tadas ;
Caprioglio, Pietro ;
Shargaieva, Oleksandra ;
Lin, Yen-Hung ;
McCarthy, Melissa M. ;
Unger, Eva ;
Getautis, Vytautas ;
Widmer-Cooper, Asaph ;
Herz, Laura M. ;
Snaith, Henry J. .
ADVANCED MATERIALS, 2023, 35 (30)
[40]   Detrimental Effect of Unreacted PbI2 on the Long-Term Stability of Perovskite Solar Cells [J].
Tumen-Ulzii, Ganbaatar ;
Qin, Chuanjiang ;
Klotz, Dino ;
Leyden, Matthew R. ;
Wang, Pangpang ;
Auffray, Morgan ;
Fujihara, Takashi ;
Matsushima, Toshinori ;
Lee, Jin-Wook ;
Lee, Sung-joon ;
Yang, Yang ;
Adachi, Chihaya .
ADVANCED MATERIALS, 2020, 32 (16)