Understanding of chlorine incorporation in wide-bandgap perovskites for efficient and stable solar cells

被引:0
作者
Zhao, Xiaoni [1 ,2 ]
Yang, Haoran [3 ,4 ]
Cheng, Yuanhang [3 ,4 ]
Liu, Shengzhong [1 ,5 ]
Fang, Zhimin [2 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Appl Surface & Colloid Chem, Shaanxi Key Lab Adv Energy Devices,Minist Educ, Xian 710119, Peoples R China
[2] Yangzhou Univ, Inst Technol Carbon Neutralizat, Yangzhou 225127, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch New Energy, Jiangyin 214443, Peoples R China
[4] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[5] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Photoelect Convers & Utilizat Solar Energy, Dalian 116023, Peoples R China
来源
NANO RESEARCH ENERGY | 2025年
基金
中国国家自然科学基金;
关键词
wide-bandgap; perovskite solar cell; triple halide; chloride additive; crystallization; GAP PEROVSKITES; HALIDE PEROVSKITES; SEGREGATION;
D O I
10.26599/NRE.2025.9120172
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cl-based salts are magical additives to control the perovskite crystallization and enhance film morphology. Especially for the I/Br halide wide-bandgap (WBG) perovskites, alloying Cl to form triple halide perovskites can effectively enhance their optoelectronic characteristics. However, the alloying mechanism of Cl into the I/Br-based perovskite lattice remains unclear. Here, we conduct a systematic in-situ photoluminescence (PL) exploration on the crystallization processes of I/Brbased WBG with Cl-based additives including MACl and PbCl2. The results reveal that only the Cl from PbCl2 is easy to incorporate into the I/Br-based perovskite lattice structure at the initial stage of perovskite nucleation. However, PbCl2 incorporation results in the precipitation of excess PbI2, which leads to unfavorable charge transport and decreased photostability. With co-incorporation of MACl and CsCl, the transition of crystal orientation during the annealing process is effectively regulated, significantly eliminating the accumulation of excess PbI2. This improvement enhances phase homogeneity and reduces defect density. Consequently, the optimized WBG perovskite solar cell achieves a high efficiency of 21.58%, which is the highest value for 1.68 eV perovskite with bromine content lower than 10%. In addition, the operational stability is significantly enhanced, along with ameliorated burn-in aging behavior.
引用
收藏
页数:12
相关论文
共 56 条
[11]   How Chloride Suppresses Photoinduced Phase Segregation in Mixed Halide Perovskites [J].
Cho, Junsang ;
Kamat, Prashant V. .
CHEMISTRY OF MATERIALS, 2020, 32 (14) :6206-6212
[12]   Overcoming Phase Segregation in Wide-Bandgap Perovskites: from Progress to Perspective [J].
Fang, Zhimin ;
Nie, Ting ;
Liu, Shengzhong ;
Ding, Jianning .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (42)
[13]   Proton-transfer-induced in situ defect passivation for highly efficient wide-bandgap inverted perovskite solar cells [J].
Fang, Zhimin ;
Jia, Lingbo ;
Yan, Nan ;
Jiang, Xiaofen ;
Ren, Xiaodong ;
Yang, Shangfeng ;
Liu, Shengzhong .
INFOMAT, 2022, 4 (06)
[14]   Perovskite-based tandem solar cells [J].
Fang, Zhimin ;
Zeng, Qiang ;
Zuo, Chuantian ;
Zhang, Lixiu ;
Xiao, Hanrui ;
Cheng, Ming ;
Hao, Feng ;
Bao, Qinye ;
Zhang, Lixue ;
Yuan, Yongbo ;
Wu, Wu-Qiang ;
Zhao, Dewei ;
Cheng, Yuanhang ;
Tan, Hairen ;
Xiao, Zuo ;
Yang, Shangfeng ;
Liu, Fangyang ;
Jin, Zhiwen ;
Yan, Jinding ;
Ding, Liming .
SCIENCE BULLETIN, 2021, 66 (06) :621-636
[15]   Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells [J].
Fei, Chengbin ;
Kuvayskaya, Anastasia ;
Shi, Xiaoqiang ;
Wang, Mengru ;
Shi, Zhifang ;
Jiao, Haoyang ;
Silverman, Timothy J. ;
Owen-Bellini, Michael ;
Dong, Yifan ;
Xian, Yeming ;
Scheidt, Rebecca ;
Wang, Xiaoming ;
Yang, Guang ;
Gu, Hangyu ;
Li, Nengxu ;
Dolan, Connor J. ;
Deng, Zhewen J. D. ;
Cakan, Deniz N. ;
Fenning, David P. ;
Yan, Yanfa ;
Beard, Matthew C. ;
Schelhas, Laura T. ;
Sellinger, Alan ;
Huang, Jinsong .
SCIENCE, 2024, 384 (6700) :1126-1134
[16]   Solar cell efficiency tables (Version 64) [J].
Green, Martin A. ;
Dunlop, Ewan D. ;
Yoshita, Masahiro ;
Kopidakis, Nikos ;
Bothe, Karsten ;
Siefer, Gerald ;
Hinken, David ;
Rauer, Michael ;
Hohl-Ebinger, Jochen ;
Hao, Xiaojing .
PROGRESS IN PHOTOVOLTAICS, 2024, 32 (07) :425-441
[17]   Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells [J].
Jacobsson, T. Jesper ;
Correa-Baena, Juan-Pablo ;
Anaraki, Elham Halvani ;
Philippe, Bertrand ;
Stranks, Samuel D. ;
Bouduban, Marine E. F. ;
Tress, Wolfgang ;
Schenk, Kurt ;
Teuscher, Joel ;
Moser, Jacques-E. ;
Rensmo, Hakan ;
Hagfeldt, Anders .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (32) :10331-10343
[18]   Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss [J].
Jeong, Mingyu ;
Choi, In Woo ;
Go, Eun Min ;
Cho, Yongjoon ;
Kim, Minjin ;
Lee, Byongkyu ;
Jeong, Seonghun ;
Jo, Yimhyun ;
Choi, Hye Won ;
Lee, Jiyun ;
Bae, Jin-Hyuk ;
Kwak, Sang Kyu ;
Kim, Dong Suk ;
Yang, Changduk .
SCIENCE, 2020, 369 (6511) :1615-+
[19]   Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution [J].
Ji, Su Geun ;
Park, Ik Jae ;
Chang, Hogeun ;
Park, Jae Hyun ;
Hong, Geon Pyo ;
Choi, Back Kyu ;
Jang, Jun Ho ;
Choi, Yeo Jin ;
Lim, Hyun Woo ;
Ahn, You Jin ;
Park, So Jeong ;
Nam, Ki Tae ;
Hyeon, Taeghwan ;
Park, Jungwonn ;
Kim, Dong Hoe ;
Kim, Jin Young .
JOULE, 2022, 6 (10) :2390-2405
[20]   Surface passivation of perovskite film for efficient solar cells [J].
Jiang, Qi ;
Zhao, Yang ;
Zhang, Xingwang ;
Yang, Xiaolei ;
Chen, Yong ;
Chu, Zema ;
Ye, Qiufeng ;
Li, Xingxing ;
Yin, Zhigang ;
You, Jingbi .
NATURE PHOTONICS, 2019, 13 (07) :460-+