A Note on 4-connected Planar K1,1,5-minor-free Graphs

被引:0
作者
Xu, Yuqi [1 ]
Yang, Weihua [1 ]
Zhao, Shuang [1 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Forbidden minor; 4-regular; 4-connected; K-1; K-5-minor-free;
D O I
10.1007/s00373-025-02948-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K-1,K-1,K-5 be the graph obtained from K-2,K-5 by adding an edge connecting two vertices of degree 5. In this paper, we prove that 4-connected planar K-1,K-1,K-5-minor-free graphs contain no vertex of degree more than five. We also provide a complete characterization of 4-connected, 4-regular, planar K(1,1,5-)minor-free graphs.
引用
收藏
页数:8
相关论文
共 14 条
[1]  
Marshall EA, 2015, Arxiv, DOI arXiv:1507.06800
[2]   Excluding a small minor [J].
Ding, Guoli ;
Liu, Cheng .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (03) :355-368
[3]   A CHARACTERIZATION OF K2,4-MINOR-FREE GRAPHS [J].
Ellingham, M. N. ;
Marshall, Emily A. ;
Ozeki, Kenta ;
Tsuchiya, Shoichi .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) :955-975
[4]  
Fontet M., 1979, Connectivite des graphes et automorphismes des carts: proprietes et algorithmes
[5]  
Kelmans A., 1993, Contemporary Mathematics, V147, P635
[6]  
Maharry J, 1999, J GRAPH THEOR, V31, P95, DOI 10.1002/(SICI)1097-0118(199906)31:2<95::AID-JGT2>3.3.CO
[7]  
2-E
[8]  
Marshall E.A., 2014, Hamiltonicity and structure of classes of minor-free graphs
[9]   UNCONTRACTABLE 4-CONNECTED GRAPHS [J].
MARTINOV, N .
JOURNAL OF GRAPH THEORY, 1982, 6 (03) :343-344
[10]  
OConnell K., 2018, Characterization and Hamiltonicity of -minor-free graphs: A Fan-based Approach