Comparison of Mesoscale and Large-Eddy Simulation Results with Observational Data in the Atmospheric Boundary Layer

被引:0
作者
Anisimov, S. V. [1 ]
Mareev, E. A. [2 ]
Galichenko, S. V. [1 ]
Ilin, N. V. [2 ]
Prokhorchuk, A. A. [1 ]
Klimanova, E. V. [1 ]
Kozmina, A. S. [1 ]
Aphinogenov, K. V. [1 ]
Guriev, A. V. [1 ]
机构
[1] Russian Acad Sci, Inst Phys Earth, Borok Geophys Observ, Branch Schmidt, Yaroslavl oblast 152742, Russia
[2] Russian Acad Sci, Fed Res Ctr, Gaponov Grekhov Inst Appl Phys, Nizhnii Novgorod 603950, Russia
基金
俄罗斯科学基金会;
关键词
atmospheric boundary layer; mesoscale atmospheric modeling; large-eddy simulation; acoustic and microwave atmospheric sounding; TURBULENT INFLOW GENERATION; WEATHER RESEARCH; MODEL; WRF; APPROXIMATION; SENSITIVITY; CONVECTION;
D O I
10.1134/S0001433825700239
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A numerical model of micrometeorology and turbulent dynamics of the daytime atmospheric boundary layer over a complex surface has been developed. The model was built by nesting the large-eddy simulation using the PALM into the mesoscale Weather Research and Forecasting (WRF) model. The modeling results are compared with the data of acoustic and microwave sounding of the atmosphere and ground-based and airborne observations using a tethered balloon with temperature and humidity sensors. Deviations of the main meteorological and turbulent parameters predicted by the model from the measured values are estimated.
引用
收藏
页码:111 / 131
页数:21
相关论文
共 64 条
[1]   A Large-Eddy Simulation Model for Boundary-Layer Flow Over Surfaces with Horizontally Resolved but Vertically Unresolved Roughness Elements [J].
Anderson, William ;
Meneveau, Charles .
BOUNDARY-LAYER METEOROLOGY, 2010, 137 (03) :397-415
[2]   Electricity of the Undisturbed Atmospheric Boundary Layer of Middle Latitudes [J].
Anisimov, S. V. ;
Aphinogenov, K. V. ;
Galichenko, S. V. ;
Prokhorchuk, A. A. ;
Klimanova, E. V. ;
Kozmina, A. S. ;
Guriev, A. V. .
IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2023, 59 (05) :522-537
[3]   Statistics of variations in atmospheric electrical parameters based on a three-dimensional model and field observations [J].
Anisimov, S. V. ;
Galichenko, S. V. ;
Prokhorchuk, A. A. ;
Klimanova, E. V. .
ATMOSPHERIC RESEARCH, 2021, 259
[4]   Mid-latitude atmospheric boundary layer electricity: A study by using a tethered balloon platform [J].
Anisimov, S., V ;
Galichenko, S., V ;
Aphinogenov, K., V ;
Klimanova, E., V ;
Prokhorchuk, A. A. ;
Kozmina, A. S. ;
Guriev, A., V .
ATMOSPHERIC RESEARCH, 2021, 250
[5]   Mid-latitude convective boundary-layer electricity: A study by large-eddy simulation [J].
Anisimov, S. V. ;
Galichenko, S. V. ;
Prokhorchuk, A. A. ;
Aphinogenov, K. V. .
ATMOSPHERIC RESEARCH, 2020, 244
[6]   An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations [J].
Ayotte, KW ;
Sullivan, PP ;
Andren, A ;
Doney, SC ;
Holtslag, AAM ;
Large, WG ;
Mcwilliams, JC ;
Moeng, CH ;
Otte, MJ ;
Tribbia, JJ ;
Wyngaard, JC .
BOUNDARY-LAYER METEOROLOGY, 1996, 79 (1-2) :131-175
[7]  
Bannon PR, 1996, J ATMOS SCI, V53, P3618, DOI 10.1175/1520-0469(1996)053<3618:OTAAFA>2.0.CO
[8]  
2
[9]   On the heat transfer in Rayleigh-Benard systems [J].
Benzi, R ;
Toschi, F ;
Tripiccione, R .
JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (3-4) :901-918
[10]  
Chen, 2023, NCAR TECHNICAL NOTE, DOI [10.5065/ew8g-yr95, DOI 10.5065/EW8G-YR95]