YOLOv8-MSP-PD: A Lightweight YOLOv8-Based Detection Method for Jinxiu Malus Fruit in Field Conditions

被引:0
作者
Liu, Yi [1 ]
Han, Xiang [1 ]
Zhang, Hongjian [1 ,2 ]
Liu, Shuangxi [1 ]
Ma, Wei [3 ]
Yan, Yinfa [1 ]
Sun, Linlin [1 ]
Jing, Linlong [1 ]
Wang, Yongxian [1 ]
Wang, Jinxing [1 ,2 ]
机构
[1] Shandong Agr Univ, Coll Mech & Elect Engn, Tai An 271018, Peoples R China
[2] Shandong Key Lab Intelligent Prod Technol & Equipm, Tai An 271018, Peoples R China
[3] Chinese Acad Agr Sci, Inst Urban Agr, Chengdu 610213, Peoples R China
来源
AGRONOMY-BASEL | 2025年 / 15卷 / 07期
关键词
Jinxiu Malus fruit; YOLOv8; lightweight; multi-scale feature fusion; object detection;
D O I
10.3390/agronomy15071581
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Accurate detection of Jinxiu Malus fruits in unstructured orchard environments is hampered by frequent overlap, occlusion, and variable illumination. To address these challenges, we propose YOLOv8-MSP-PD (YOLOv8 with Multi-Scale Pyramid Fusion and Proportional Distance IoU), a lightweight model built on an enhanced YOLOv8 architecture. We replace the backbone with MobileNetV4, incorporating unified inverted bottleneck (UIB) modules and depth-wise separable convolutions for efficient feature extraction. We introduce a spatial pyramid pooling fast cross-stage partial connections (SPPFCSPC) module for multi-scale feature fusion and a modified proportional distance IoU (MPD-IoU) loss to optimize bounding-box regression. Finally, layer-adaptive magnitude pruning (LAMP) combined with knowledge distillation compresses the model while retaining performance. On our custom Jinxiu Malus dataset, YOLOv8-MSP-PD achieves a mean average precision (mAP) of 92.2% (1.6% gain over baseline), reduces floating-point operations (FLOPs) by 59.9%, and shrinks to 2.2 MB. Five-fold cross-validation confirms stability, and comparisons with Faster R-CNN and SSD demonstrate superior accuracy and efficiency. This work offers a practical vision solution for agricultural robots and guidance for lightweight detection in precision agriculture.
引用
收藏
页数:19
相关论文
共 23 条
[1]   DSW-YOLO: A detection method for ground-planted strawberry fruits under different occlusion levels [J].
Du, Xiaoqiang ;
Cheng, Hongchao ;
Ma, Zenghong ;
Lu, Wenwu ;
Wang, Mengxiang ;
Meng, Zhichao ;
Jiang, Chengjie ;
Hong, Fangwei .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 214
[2]   Phenolic Profile, Antioxidant Activity and Anti-proliferative Activity of Crabapple Fruits [J].
Han, Meiling ;
Li, Guo ;
Liu, Xiaowei ;
Li, Ai ;
Mao, Peiqi ;
Liu, Pengyuan ;
Li, Houhua .
HORTICULTURAL PLANT JOURNAL, 2019, 5 (04) :155-163
[3]   HCRP-YOLO: A lightweight algorithm for potato defect detection [J].
Liao, Haojie ;
Wang, Guanping ;
Jin, Siyu ;
Liu, Yan ;
Sun, Wei ;
Yang, Sen ;
Wang, Lu .
SMART AGRICULTURAL TECHNOLOGY, 2025, 10
[4]   Color-, depth-, and shape-based 3D fruit detection [J].
Lin, Guichao ;
Tang, Yunchao ;
Zou, Xiangjun ;
Xiong, Juntao ;
Fang, Yamei .
PRECISION AGRICULTURE, 2020, 21 (01) :1-17
[5]   In-field citrus detection and localisation based on RGB-D image analysis [J].
Lin, Guichao ;
Tang, Yunchao ;
Zou, Xiangjun ;
Li, Jinhui ;
Xiong, Juntao .
BIOSYSTEMS ENGINEERING, 2019, 186 :34-44
[6]   SSD: Single Shot MultiBox Detector [J].
Liu, Wei ;
Anguelov, Dragomir ;
Erhan, Dumitru ;
Szegedy, Christian ;
Reed, Scott ;
Fu, Cheng-Yang ;
Berg, Alexander C. .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :21-37
[7]   A Detection Method for Apple Fruits Based on Color and Shape Features [J].
Liu, Xiaoyang ;
Zhao, Dean ;
Jia, Weikuan ;
Ji, Wei ;
Sun, Yueping .
IEEE ACCESS, 2019, 7 :67923-67933
[8]   DSOD-YOLO: A lightweight dual feature extraction method for small target detection [J].
Nie, Yuan ;
Lai, Huicheng ;
Gao, Guxue .
DIGITAL SIGNAL PROCESSING, 2025, 164
[9]   MobileNetV4: Universal Models for the Mobile Ecosystem [J].
Qin, Danfeng ;
Leichner, Chas ;
Delakis, Manolis ;
Fornoni, Marco ;
Luo, Shixin ;
Yang, Fan ;
Wang, Weijun ;
Banbury, Colby ;
Ye, Chengxi ;
Akin, Berkin ;
Aggarwal, Vaibhav ;
Zhu, Tenghui ;
Moro, Daniele ;
Howard, Andrew .
COMPUTER VISION - ECCV 2024, PT XL, 2025, 15098 :78-96
[10]   An Enhanced Detector for Vulnerable Road Users Using Infrastructure-Sensors-Enabled Device [J].
Shi, Jian ;
Sun, Dongxian ;
Kieu, Minh ;
Guo, Baicang ;
Gao, Ming .
SENSORS, 2024, 24 (01)