Understanding predator-prey coexistence mechanisms is essential for conserving endemic species in montane ecosystems. Galliformes serve as critical ecological indicator species, yet their populations are declining globally due to habitat fragmentation and anthropogenic pressures. Elliot's pheasant (Syrmaticus ellioti, Swinhoe, 1872), a Galliformes species endemic to China, is primarily distributed south of the Yangtze River. However, its coexistence mechanisms with sympatric predators remain undocumented. Here, using six years (2019-2024) of camera-trap data from 90 stations in Jiemuxi National Nature Reserve, Hunan Province, Southwest China, we employed a MaxEnt model and kernel density estimation to investigate spatiotemporal coexistence mechanisms between Elliot's pheasant and its primary predator, the leopard cat (Prionailurus bengalensis, Kerr, 1792). Across 36,946 camera-days, we obtained 227 independent detections of Elliot's pheasant and 82 of the leopard cat. Spatial niche analysis revealed high overlap (Schoener's D = 0.769; Hellinger's I = 0.952). Both species exhibit similar preferences for main environmental variables. Conversely, significant temporal niche segregation occurred: Elliot's pheasant displayed diurnal bimodal activity, whereas the leopard cat was strictly nocturnal, resulting in low overlap (Delta(4) = 0.379, p < 0.01). Critically, during Elliot's pheasant's breeding season, increased temporal overlap with the leopard cat (Delta(1) = 0.479, p < 0.01) suggested that reproductive behaviors elevate predation risk. Our findings demonstrate that temporal niche partitioning serves as the primary coexistence mechanism, while spatial niche overlap and behavioral adaptations under predation pressure drive dynamic predator-prey interactions. This provides a scientific foundation for targeted conservation strategies and predator management of these threatened Galliformes.