Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes

被引:129
作者
Lee, Hee Dae [1 ]
Kim, Hyo Won [1 ]
Cho, Young Hoon [1 ]
Park, Ho Bum [1 ]
机构
[1] Department of Energy Engineering, Hanyang University
关键词
carbon nanotubes; desalination; polymeric membranes; salt rejection; water transport;
D O I
10.1002/smll.201303945
中图分类号
学科分类号
摘要
As water molecules permeate ultrafast through carbon nanotubes (CNTs), many studies have prepared CNTs-based membranes for water purification as well as desalination, particularly focusing on high flux membranes. Among them, vertically aligned CNTs membranes with ultrahigh water flux have been successfully demonstrated for fundamental studies, but they lack scalability for bulk production and sufficiently high salt rejection. CNTs embedded in polymeric desalination membranes, i.e., polyamide thin-film composite (TFC) membranes, can improve water flux without any loss of salt rejection. This improved flux is achieved by enhancing the dispersion properties of CNTs in diamine aqueous solution and also by using cap-opened CNTs. Hydrophilic CNTs were prepared by wrapping CNT walls via bio-inspired surface modification using dopamine solution. Cap-opening of pristine CNTs is performed by using a thermo-oxidative process. As a result, hydrophilic, cap-opened CNTs-embedded polyamide TFC membranes are successfully prepared, which show much higher water flux than pristine polyamide TFC membrane. On the other hand, less-disperse, less cap-opened CNTs-embedded TFC membranes do not show any flux improvement and rather lead to lower salt rejection properties. Future membranes: Experimental evidence of rapid water transport is demonstrated in randomly oriented carbon nanotube (CNT)-embedded polyamide thin-film composite membranes. Systematic investigation shows rapid water transport through inner the CNTs with hydrophilic functionalized and open-ended structural properties. These results could provide a direction for research into CNTs-based highly water-permeable desalination membranes in the near future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:2653 / 2660
页数:7
相关论文
共 38 条
[1]  
Franklin A.D., Chen Z.H., Nat. Nanotechnol., 5, 12, pp. 858-862, (2010)
[2]  
Jarosz P., Schauerman C., Alvarenga J., Moses B., Mastrangelo T., Raffaelle R., Ridgley R., Landi B., Nanoscale, 3, 11, pp. 4542-4553, (2011)
[3]  
Fukuda K., Sekitani T., Zschieschang U., Klauk H., Kuribara K., Yokota T., Sugino T., Asaka K., Ikeda M., Kuwabara H., Yamamoto T., Takimiya K., Fukushima T., Aida T., Takamiya M., Sakurai T., Someya T., Adv. Funct. Mater., 21, 21, pp. 4019-4027, (2011)
[4]  
Lee S.W., Yabuuchi N., Gallant B.M., Chen S., Kim B.S., Hammond P.T., Shao-Horn Y., Nat. Nanotechnol., 5, 7, pp. 531-537, (2010)
[5]  
Chen T., Wang S.T., Yang Z.B., Feng Q.Y., Sun X.M., Li L., Wang Z.S., Peng H.S., Angew. Chem. Int. Ed., 50, 8, pp. 1815-1819, (2011)
[6]  
Assfour B., Leoni S., Seifert G., Baburin I.A., Adv. Mater., 23, 10, pp. 1237-1241, (2011)
[7]  
Fan Z.J., Yan J., Zhi L.J., Zhang Q., Wei T., Feng J., Zhang M.L., Qian W.Z., Wei F., Adv. Mater., 22, 33, pp. 3723-3728, (2010)
[8]  
Holt J.K., Park H.G., Wang Y.M., Stadermann M., Artyukhin A.B., Grigoropoulos C.P., Noy A., Bakajin O., Science, 312, 5776, pp. 1034-1037, (2006)
[9]  
Majumder M., Chopra N., Hinds B.J., ACS Nano, 5, 5, pp. 3867-3877, (2011)
[10]  
Verweij H., Schillo M.C., Li J., Small, 3, 12, pp. 1996-2004, (2007)