Predicting delirium in critically Ill COVID-19 patients using EEG-derived data: a machine learning approach

被引:0
作者
Viegas, Ana [1 ,2 ,3 ,4 ,5 ]
Von Rekowski, Cristiana P. [1 ,2 ,6 ]
Araujo, Ruben [1 ,2 ,6 ]
Ramalhete, Luis [1 ,7 ,8 ]
Cordeiro, Ines Menezes [5 ,9 ]
Manita, Manuel [5 ,9 ]
Viana-Baptista, Miguel [1 ,10 ,11 ]
Macedo, Paula [1 ,8 ]
Bento, Luis [1 ,2 ,12 ]
机构
[1] Univ Nova Lisboa, FCM, NMS NOVA Med Sch, Campo Martires Patria 130, P-1169056 Lisbon, Portugal
[2] Univ Nova Lisboa, CHRC, Campo Martires Patria 130, P-1169056 Lisbon, Portugal
[3] Inst Politecn Lisboa, ESTeSL Escola Super Tecnol Saude Lisboa, Ave D Joao II,Lote 4-69-01, P-1990096 Lisbon, Portugal
[4] Inst Politecn Lisboa, H&TRC Hlth & Technol Res Ctr, ESTeSL Escola Super Tecnol Saude Lisboa, Ave D Joao II,Lote 4-69-01,Parque Nacoes, P-1990096 Lisbon, Portugal
[5] ULSSJ Unidade Local Saude Sao Jose, Clin Neurophysiol Unit, Neurosci Area, Rua Jose Antonio Serrano, P-1150199 Lisbon, Portugal
[6] Inst Politecn Lisboa, ISEL, Rua Conselheiro Emidio Navarro,1, P-1959007 Lisbon, Portugal
[7] Inst Portugues Sangue & Transplantacao, Blood & Transplantat Ctr Lisbon, Ave Miguel Bombarda 6, P-1000208 Lisbon, Portugal
[8] Univ NOVA Lisboa, FCM, NOVA Med Sch, FCM,iNOVA4Hth Adv Precis Med, Campo Martires Patria 130, P-1169056 Lisbon, Portugal
[9] ULSSJ Unidade Local Saude Sao Jose, Intens Care Dept, Rua Jose Antonio Serrano, P-1150199 Lisbon, Portugal
[10] Unidade Local Saude Lisboa Ocidental, Dept Gastroenterol, Rua Junqueira 126, P-1349019 Lisbon, Portugal
[11] Univ Nova Lisboa, CEDOC Chron Dis Res Ctr, NOVA Med Sch, Fac Ciencias Med, Campo Martires Patria 130, P-1169056 Lisbon, Portugal
[12] ULSSJ Unidade Local Saude Sao Jose, Intens Care Dept, Rua Jose Antonio Serrano, P-1150199 Lisbon, Portugal
关键词
Delirium; EEG; COVID-19; SARS-CoV-2; infection; ICU; Machine learning; INTENSIVE-CARE-UNIT; INTRAOPERATIVE ELECTROENCEPHALOGRAM SUPPRESSION; POSTOPERATIVE DELIRIUM; BURST SUPPRESSION; ICU; VALIDITY; OSCILLATIONS; RELIABILITY; RECOVERY; SYSTEM;
D O I
10.1007/s11357-025-01809-0
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Delirium is a severe and common complication among critically ill patients, particularly those with SARS-CoV-2 infection, contributing to increased morbidity and mortality. Early identification of at-risk patients is crucial for timely intervention and improved outcomes. This prospective observational cohort study explores the potential of electroencephalography (EEG) combined with machine learning (ML) models for predicting delirium in critically ill patients with SARS-CoV-2 infection. A stepwise modeling approach was applied, starting with the independent analysis of specific EEG variables to assess their predictive value. Subsequently, three ML models were developed using data from 70 patients (31 with delirium, 39 without): two relied solely on EEG data, while the third integrated demographic, clinical, laboratory, and EEG data. An additional model analyzed EEG data before and after delirium diagnosis in 11 patients. Several EEG features were identified as predictors of delirium, with increased theta activity emerging as the most consistent. The best EEG-only model achieved an area under the curve (AUC) of 0.733 (sensitivity = 0.645, specificity = 0.692), indicating moderate predictive performance. Including demographic, clinical, and laboratory variables improved performance (AUC = 0.825, sensitivity = 0.613, specificity = 0.795). The model analyzing EEG features before and after delirium diagnosis achieved the highest accuracy (AUC = 0.950, sensitivity and specificity = 0.818), reinforcing the value of EEG-based monitoring. EEG-based ML models show promise for predicting delirium in critically ill patients, with increased theta activity identified as a key predictor. However, their moderate AUC, sensitivity, and specificity highlight the need for further refinement.
引用
收藏
页数:29
相关论文
共 126 条
[1]   Clinical Use of EEG in the ICU: Technical Setting [J].
Alvarez, Vincent ;
Rossetti, Andrea O. .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2015, 32 (06) :481-485
[2]  
American Psychiatric Association, 2013, Diagnostic and Statistical Manual of Mental Disorders (DSM-5 (R)), DOI [10.1176/appi.books.9780890420249.dsm-iv-tr, DOI 10.1176/APPI.BOOKS.9780890425596]
[3]   Burst Suppression on Processed Electroencephalography as a Predictor of Postcoma Delirium in Mechanically Ventilated ICU Patients [J].
Andresen, Jennifer M. ;
Girard, Timothy D. ;
Pandharipande, Pratik P. ;
Davidson, Mario A. ;
Ely, E. Wesley ;
Watson, Paula L. .
CRITICAL CARE MEDICINE, 2014, 42 (10) :2244-2251
[4]  
[Anonymous], 2011, Niedermeyer's electroencephalography: basic principles, clinical applications, and related fields
[5]   Delirium in the intensive care unit: a review [J].
Arend, Emma ;
Christensen, Martin .
NURSING IN CRITICAL CARE, 2009, 14 (03) :145-154
[6]   Value and mechanisms of EEG reactivity in the prognosis of patients with impaired consciousness: a systematic review [J].
Azabou, Eric ;
Navarro, Vincent ;
Kubis, Nathalie ;
Gavaret, Martine ;
Heming, Nicholas ;
Cariou, Alain ;
Annane, Djillali ;
Lofaso, Frederic ;
Naccache, Lionel ;
Sharshar, Tarek .
CRITICAL CARE, 2018, 22
[7]   Early Standard Electroencephalogram Abnormalities Predict Mortality in Septic Intensive Care Unit Patients [J].
Azabou, Eric ;
Magalhaes, Eric ;
Braconnier, Antoine ;
Yahiaoui, Lyria ;
Moneger, Guy ;
Heming, Nicholas ;
Annane, Djillali ;
Mantz, Jean ;
Chretien, Fabrice ;
Durand, Marie-Christine ;
Lofaso, Frederic ;
Porcher, Raphael ;
Sharshar, Tarek .
PLOS ONE, 2015, 10 (10)
[8]   Delirium in COVID-19: A case series and exploration of potential mechanisms for central nervous system involvement [J].
Beach, Scott R. ;
Praschan, Nathan C. ;
Hogan, Charlotte ;
Dotson, Samuel ;
Merideth, Flannery ;
Kontos, Nicholas ;
Fricchione, Gregory L. ;
Smith, Felicia A. .
GENERAL HOSPITAL PSYCHIATRY, 2020, 65 :47-53
[9]   Environmental Issues and Neurological Manifestations Associated with COVID-19 Pandemic: New Aspects of the Disease? [J].
Bellocchio, Luigi ;
Bordea, Ioana Roxana ;
Ballini, Andrea ;
Lorusso, Felice ;
Hazballa, Denisa ;
Isacco, Ciro Gargiulo ;
Malcangi, Giuseppina ;
Inchingolo, Alessio Danilo ;
Dipalma, Gianna ;
Inchingolo, Francesco ;
Piscitelli, Prisco ;
Logroscino, Giancarlo ;
Miani, Alessandro .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (21)
[10]   A Real-Time Neurophysiologic Stress Test for the Aging Brain: Novel Perioperative and ICU Applications of EEG in Older Surgical Patients [J].
Berger, Miles ;
Ryu, David ;
Reese, Melody ;
McGuigan, Steven ;
Evered, Lisbeth A. ;
Price, Catherine C. ;
Scott, David A. ;
Westover, M. Brandon ;
Eckenhoff, Roderic ;
Bonanni, Laura ;
Sweeney, Aoife ;
Babiloni, Claudio .
NEUROTHERAPEUTICS, 2023, 20 (04) :975-1000