Dual Optimization via Doping PCBM with Diamine for Efficient Pure-Iodide Wide-Bandgap Perovskite Solar Cells

被引:0
作者
Li, Dehan [1 ,2 ]
Nie, Ting [2 ,3 ]
Zhao, Guangtao [3 ]
Lv, Rongyao [1 ]
Feng, Jiangshan [3 ]
Ding, Jianning [2 ]
Yang, Shangfeng [1 ]
Liu, Shengzhong [3 ,4 ,5 ,6 ]
Fang, Zhimin [2 ]
机构
[1] Univ Sci & Technol China, Collaborat Innovat Ctr Chem Energy Mat IChEM, Dept Mat Sci & Engn, State Key Lab Precis & Intelligent Chem, Hefei 230026, Peoples R China
[2] Yangzhou Univ, Inst Technol Carbon Neutralizat, Yangzhou 225127, Peoples R China
[3] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Appl Surface & Colloid Chem, Minist Educ,Shaanxi Key Lab Adv Energy Devices,Sha, Xian 710119, Peoples R China
[4] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Photoelect Convers & Utilizat Solar Energy, Dalian 116023, Peoples R China
[5] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[6] CNNP Optoelect Technol, 2828 Canghai Rd, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
defect passivation; electron transfer; fullerene; pure-iodide; wide-bandgap perovskite solar cell; GAP PEROVSKITES;
D O I
10.1002/adfm.202502847
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The excellent photostability of pure-iodide wide-bandgap (WBG) perovskite solar cells (PSCs) makes them ideal candidates for tandem and indoor photovoltaics. However, the efficiency is significantly restricted by interfacial charge transfer and recombination behaviors. Here, highly efficient pure-iodide WBG PSCs achieved through a dual optimization strategy for the perovskite/PCBM interface is presented. The PCBM/chlorobenzene solution, doped with propanediamine iodine (PDAI2)/isopropanol solution, is deposited onto the Cs0.4DMA0.2FA0.2MA0.2PbI3 perovskite layer. The presence of isopropanol notably improves the wetness of the PCBM solution, which is beneficial for depositing a smooth PCBM layer and economizing on the material. Most importantly, the PDAI2 in PCBM not only passivates perovskite surface defects to suppress non-radiative recombination but also induces n-type doping for PCBM to enhance its carrier mobility and elevate the Fermi level with better energy level matching, thereby reducing energy loss and facilitating electron transfer. These benefits result in overall photovoltaic improvements, achieving a high efficiency of 21.84%, while retaining 92% of its initial efficiency after 1500 h of continuous illumination. Furthermore, when applied under indoor light illumination (1000 lux, 280 mu W cm-2), the best cell demonstrates an impressive efficiency of 41.05%.
引用
收藏
页数:10
相关论文
共 60 条
[1]   Double-side 2D/3D heterojunctions for inverted perovskite solar cells [J].
Azmi, Randi ;
Utomo, Drajad Satrio ;
Vishal, Badri ;
Zhumagali, Shynggys ;
Dally, Pia ;
Risqi, Andi Muhammad ;
Prasetio, Adi ;
Ugur, Esma ;
Cao, Fangfang ;
Imran, Imil Fadli ;
Said, Ahmed Ali ;
Pininti, Anil Reddy ;
Subbiah, Anand Selvin ;
Aydin, Erkan ;
Xiao, Chuanxiao ;
Seok, Sang Il ;
De Wolf, Stefaan .
NATURE, 2024, 628 (8006) :93-98
[2]   Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene [J].
Bai, Yang ;
Dong, Qingfeng ;
Shao, Yuchuan ;
Deng, Yehao ;
Wang, Qi ;
Shen, Liang ;
Wang, Dong ;
Wei, Wei ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2016, 7
[3]   Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1-xBrx)3 Hybrid Halide Perovskite Alloy [J].
Brivio, Federico ;
Caetano, Clovis ;
Walsh, Aron .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (06) :1083-1087
[4]   Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules [J].
Bu, Tongle ;
Li, Jing ;
Li, Hengyi ;
Tian, Congcong ;
Su, Jie ;
Tong, Guoqing ;
Ono, Luis K. ;
Wang, Chao ;
Lin, Zhipeng ;
Chai, Nianyao ;
Zhang, Xiao-Li ;
Chang, Jingjing ;
Lu, Jianfeng ;
Zhong, Jie ;
Huang, Wenchao ;
Qi, Yabing ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
SCIENCE, 2021, 372 (6548) :1327-+
[5]   Tailoring the Cs/Br Ratio for Efficient and Stable Wide-Bandgap Perovskite Solar Cells [J].
Cao, Jiali ;
Fang, Zhimin ;
Liu, Shengzhong .
SOLAR RRL, 2023, 7 (02)
[6]   Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4% [J].
Chen, Bo ;
Yu, Zhengshan ;
Liu, Kong ;
Zheng, Xiaopeng ;
Liu, Ye ;
Shi, Jianwei ;
Spronk, Derrek ;
Rudd, Peter N. ;
Holman, Zachary ;
Huang, Jinsong .
JOULE, 2019, 3 (01) :177-190
[7]  
David G. S., 2016, Science, V315, P151
[8]   Overcoming Phase Segregation in Wide-Bandgap Perovskites: from Progress to Perspective [J].
Fang, Zhimin ;
Nie, Ting ;
Liu, Shengzhong ;
Ding, Jianning .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (42)
[9]   Defects in perovskite crystals [J].
Fang, Zhimin ;
Sun, Jie ;
Liu, Shengzhong ;
Ding, Liming .
JOURNAL OF SEMICONDUCTORS, 2023, 44 (08)
[10]   Proton-transfer-induced in situ defect passivation for highly efficient wide-bandgap inverted perovskite solar cells [J].
Fang, Zhimin ;
Jia, Lingbo ;
Yan, Nan ;
Jiang, Xiaofen ;
Ren, Xiaodong ;
Yang, Shangfeng ;
Liu, Shengzhong .
INFOMAT, 2022, 4 (06)