Pure Lovelock gravity regular black holes

被引:0
作者
Estrada, Milko [1 ]
Aros, Rodrigo [2 ]
机构
[1] Univ Catolica Silva Henriquez, Fac Ingn & Empresa, Santiago, Chile
[2] Univ Andres Bello, Dept Ciencias Fisicas, Ave Republ 252, Santiago, Chile
关键词
Exact solutions; black holes and black hole thermodynamics in GR and beyond; Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; GR black holes; modified gravity;
D O I
10.1088/1475-7516/2025/01/032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a new family of regular black holes (RBH) in Pure Lovelock gravity, where the energy density is determined by the gravitational vacuum tension, which varies for each value of n in each Lovelock case. Speculatively, our model may capture quantum effects through gravitational tension. In this way, a hypothetical analogy is drawn between the pair production ratio in the Schwinger effect and our energy density. A notable feature of our model is that the regular solution closely resembles the vacuum solution before reaching the event horizon. For odd n, the transverse geometry is spherical, with phase transitions occurring during evaporation, and the final state of this process is a remnant. For even n, the transverse geometry is non trivial and corresponds to a hyperboloid. In the case of d = 2n+ 1 with even n, we find an RBH without a dS core and no inner horizon (whose presence has been recently debated in the literature due to the question of whether its presence is unstable or not), and no phase transitions. For d > 2n + 1 with even n, the RBH possesses both an event horizon and a cosmological horizon, also with no inner horizon present. The existence of the cosmological horizon arises without the usual requirement of a positive cosmological constant. From both numerical and analytical analysis, we deduce that as the event horizon expands and the cosmological horizon contracts, thermodynamic equilibrium is achieved in a remnant when the two horizons coincide.
引用
收藏
页数:26
相关论文
共 50 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   The generalized uncertainty principle and black hole remnants [J].
Adler, RJ ;
Chen, PS ;
Santiago, DI .
GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (12) :2101-2108
[3]   Dymnikova GUP-corrected black holes [J].
Alencar, G. ;
Estrada, Milko ;
Muniz, C. R. ;
Olmo, Gonzalo J. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (11)
[4]  
Ansoldi S., 2007, P C BLACK HOL NAK SI
[5]   Black holes with topologically nontrivial AdS asymptotics [J].
Aros, R ;
Troncoso, R ;
Zanelli, J .
PHYSICAL REVIEW D, 2001, 63 (08)
[6]   de Sitter thermodynamics: A glimpse into nonequilibrium [J].
Aros, Rodrigo .
PHYSICAL REVIEW D, 2008, 77 (10)
[7]   Asymptotically flat vacuum solutions in order-reduced semiclassical gravity [J].
Arrechea, Julio ;
Barcelo, Carlos ;
Carballo-Rubio, Raul ;
Garay, Luis J. .
PHYSICAL REVIEW D, 2023, 107 (08)
[8]   Singularity theorems for the Reissner-Nordstrom spacetime and topology change in regular black holes [J].
Bargueno, Pedro .
PHYSICAL REVIEW D, 2021, 104 (02)
[9]   Some global, analytical, and topological properties of regular black holes [J].
Bargueno, Pedro .
PHYSICAL REVIEW D, 2020, 102 (10)
[10]   Delaying the inevitable: tidal disruption in microstate geometries [J].
Bena, Iosif ;
Houppe, Anthony ;
Warner, Nicholas P. .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (02)