A simulation based architecture for the development of an autonomous all terrain vehicle

被引:7
作者
Bardaro, Gianluca [1 ]
Cucci, Davide Antonio [1 ]
Bascetta, Luca [1 ]
Matteucci, Matteo [1 ]
机构
[1] Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2014年 / 8810卷
关键词
Off road vehicles - Landforms;
D O I
10.1007/978-3-319-11900-7_7
中图分类号
学科分类号
摘要
In this work we describe a simulation environment for an autonomous all-terrain mobile robot. To allow for extensive test and verification of the high-level perception, planning, and trajectory control modules, the low-level control systems, the sensors, and the vehicle dynamics have been modeled and simulated by means of the V-Rep 3D simulator. We discuss the overall, i.e., high and low-level, software architecture and we present some validation experiments in which the behavior of the real system is compared with the corresponding simulations. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:74 / 85
页数:11
相关论文
共 14 条
[1]  
Bascetta L., Magnani G.A., Rocco P., Zanchettin A.M., Design and implementation of the low-level control system of an all-terrain mobile robot, 2009 International Conference on Advanced Robotics (ICAR), pp. 1-6, (2009)
[2]  
Bascetta L., Cucci D., Magnani G., Matteucci M., Osmankovic D., Tahirovic A., Towards the implementation of a mpc-based planner on an autonomous allterrain vehicle, Proceedings of Workshop on Robot Motion Planning: Online, pp. 1-7, (2012)
[3]  
Bruck D., Elmqvist H., Mattsson S.E., Olsson H., Dymola for multi-engineering modeling and simulation, Proceedings of Modelica, (2002)
[4]  
Cucci D.A., Matteucci M., Position tracking and sensors self-calibration in autonomous mobile robots by gauss-newton optimization, 2014 IEEE International Conference on Robotics and Automation (ICRA)
[5]  
Cucci D.A., Matteucci M., On the development of a generic multi-sensor fusion framework for robust odometry estimation, Journal of Software Engineering for Robotics, 5, 1, pp. 48-62, (2014)
[6]  
Freese M., Singh S., Ozaki F., Matsuhira N., Virtual robot experimentation platform V-REP: A versatile 3D robot simulator, SIMPAR 2010. LNCS, 6472, pp. 51-62, (2010)
[7]  
Hellstrom T., Ringdahl O., Real-time path planning using a simulator-in-the-loop, International Journal of Vehicle Autonomous Systems, 7, 1, pp. 56-72, (2009)
[8]  
Jayakumar P., Smith W., Ross B.A., Jategaonkar R., Konarzewski K., Development of high fidelity mobility simulation of an autonomous vehicle in an off-road scenario using integrated sensor, controller, and multi-body dynamics, (2011)
[9]  
Koenig N., Howard A., Design and use paradigms for gazebo, an open-source multi-robot simulator, Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), 3, pp. 2149-2154, (2004)
[10]  
Kummerle R., Grisetti G., Strasdat H., Konolige K., Burgard W., G<sub>2</sub>o: A general framework for graph optimization, 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3607-3613, (2011)