An Armijo-Type viscosity algorithm for continuous equilibrium problems without monotonicity on Hadamard manifolds

被引:0
作者
Yang, Wanning [1 ]
Wang, Lin [2 ,3 ]
Ma, Zhaoli [4 ]
Yan, Liang [1 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Longquan Rd, Kunming 650221, Yunnan, Peoples R China
[2] Yunnan Univ Finance & Econ, Yunnan Key Lab Serv Comp, Longquan Rd, Kunming 650221, Yunnan, Peoples R China
[3] Yunnan Univ Finance & Econ, Inst Intelligence Applicat, Longquan Rd, Kunming 650221, Yunnan, Peoples R China
[4] Yunnan Open Univ, Coll Publ Fdn, Yuhua St, Kunming 650500, Yunnan, Peoples R China
关键词
Equilibrium problem without monotonicity; Algorithm; Convergence; Hadamard manifold; PROXIMAL POINT ALGORITHM; VARIATIONAL-INEQUALITIES; EXTRAGRADIENT METHOD; VECTOR-FIELDS; CONVERGENCE; PRINCIPLE;
D O I
10.1007/s11075-025-02183-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an Armijo-Type viscosity algorithm is proposed to solve continuous equilibrium problems without monotonicity on Hadamard manifolds. The iterative sequence generated by the algorithm is shown to converge to a solution of these equilibrium problems on Hadamard manifold under some mild conditions. Meanwhile, the convergence rate of the algorithm is obtained. In addition, the results obtained in this paper is used to solve variational inequality problems and convex minimization problems, and two numerical experiments are provided to verify the effectiveness of the algorithm.
引用
收藏
页数:27
相关论文
共 42 条
[1]   A subgradient extragradient method for equilibrium problems on Hadamard manifolds [J].
Ali-Akbari, Mandi .
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01) :75-84
[2]  
[Anonymous], 2017, T A RAZMADZE MATH IN, V171, P381, DOI DOI 10.1016/j.trmi.2017.04.001
[3]   Iterative Algorithms for System of Variational Inclusions in Hadamard Manifolds [J].
Ansari, Qamrul Hasan ;
Babu, Feeroz ;
Sahu, D. R. .
ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) :1333-1356
[4]   An extragradient method for non-monotone equilibrium problems on Hadamard manifolds with applications [J].
Babu, Feeroz ;
Ali, Akram ;
Alkhaldi, Ali H. .
APPLIED NUMERICAL MATHEMATICS, 2022, 180 :85-103
[5]   Convergence of direct methods for paramonotone variational inequalities [J].
Bello Cruz, J. Y. ;
Iusem, A. N. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (02) :247-263
[6]   Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :564-572
[7]  
Blum E., 1994, Math. Stud., V63, P123
[8]  
Bridson M. R., 2013, Metric spaces of nonpositive curvature, V319
[9]   Projection algorithms for solving nonmonotone equilibrium problems in Hilbert space [J].
Bui Van Dinh ;
Kim, Do Sang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 302 :106-117
[10]  
Ceng L.-C., 2019, Fixed Point Theory, V20