Design of volleyball action recognition method integrating human posture and spatiotemporal graph convolution

被引:0
作者
Luo, Suzhen [1 ]
Lu, Bingqiu [2 ]
机构
[1] Guangxi Police Coll, Dept Publ Phys Educ, Nanning, Peoples R China
[2] Guangxi Technol & Business Vocat Coll, Sch Gen Educ, 15 Pengfei Rd, Nanning 530000, Guangxi Provinc, Peoples R China
关键词
action recognition; posture analysis; bone points; spatiotemporal graph convolution; recognition accuracy; NETWORK;
D O I
10.1177/14727978251361850
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the rise of intelligent algorithms, automated motion recognition in sports like volleyball-known for its complex movements-remains challenging. To enhance accuracy, this study introduces the Human Posture and Spatiotemporal Graph Convolution (HP-SGC) model. It uses skeletal keypoints to create a 2D coordinate system, combines object detection and pose estimation for action recognition, and applies spatiotemporal graph convolution for classification. The tests showed over 95% accuracy for continuous actions, with recognition time as low as 2.2 seconds. The model successfully identified 8 foul actions, 7 basic moves, and 4 skillful actions, averaging >90% accuracy. These results demonstrate HP-SGC's strong performance in volleyball action recognition, offering valuable tools for match analysis and statistics.
引用
收藏
页数:16
相关论文
共 31 条
[1]   An Effective Video Transformer With Synchronized Spatiotemporal and Spatial Self-Attention for Action Recognition [J].
Alfasly, Saghir ;
Chui, Charles K. ;
Jiang, Qingtang ;
Lu, Jian ;
Xu, Chen .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) :2496-2509
[2]  
Bhosle K., 2023, Artif Intell Appl, V1, P114, DOI [10.47852/bonviewaia3202441, DOI 10.47852/BONVIEWAIA3202441]
[3]   Video Action Recognition for Lane-Change Classification and Prediction of Surrounding Vehicles [J].
Biparva, Mahdi ;
Fernandez-Llorca, David ;
Izquierdo Gonzalo, Ruben ;
Tsotsos, John K. .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (03) :569-578
[4]  
Hasanvand M., 2023, Artif Intel Appl, V1, P170, DOI [10.47852/bonviewaia3202833, DOI 10.47852/BONVIEWAIA3202833]
[5]  
Kalembo VS., 2022, Acta Informatica Malaysia, V6, P43
[6]   Spatio-Temporal Adaptive Network With Bidirectional Temporal Difference for Action Recognition [J].
Li, Zhilei ;
Li, Jun ;
Ma, Yuqing ;
Wang, Rui ;
Shi, Zhiping ;
Ding, Yifu ;
Liu, Xianglong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) :5174-5185
[7]   TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition [J].
Liu, Haowei ;
Liu, Yongcheng ;
Chen, Yuxin ;
Yuan, Chunfeng ;
Li, Bing ;
Hu, Weiming .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) :4137-4148
[8]   APSNet: Toward Adaptive Point Sampling for Efficient 3D Action Recognition [J].
Liu, Jiaheng ;
Guo, Jinyang ;
Xu, Dong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :5287-5302
[9]   Multidimensional Prototype Refactor Enhanced Network for Few-Shot Action Recognition [J].
Liu, Shuwen ;
Jiang, Min ;
Kong, Jun .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) :6955-6966
[10]   Skeleton-based Human Action Recognition via Large-kernel Attention Graph Convolutional Network [J].
Liu, Yanan ;
Zhang, Hao ;
Li, Yanqiu ;
He, Kangjian ;
Xu, Dan .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (05) :2575-2585