Robust adaptive guidance for autonomous asteroid landing via search-based meta-reinforcement learning

被引:0
作者
Chen, Zheng [1 ]
Shen, Shuxin [1 ]
Cui, Hutao [1 ]
Tian, Yang [1 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China
关键词
Asteroid landing; Robust adaptive guidance; Meta-reinforcement learning; Monte Carlo tree search; CONVEX-OPTIMIZATION; TRAJECTORY DESIGN; MODEL; GAME; GO;
D O I
10.1016/j.actaastro.2025.07.001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Future asteroid missions require safe landings despite limited prior knowledge and significant uncertainties, posing a critical challenge to current autonomous guidance strategies. This paper introduces a novel robust adaptive guidance framework that integrates meta-reinforcement learning with Monte Carlo Tree Search (MCTS) to enable both rapid learning and efficient adaptation to diverse asteroids. The framework leverages a recurrent network within its meta-reinforcement learning architecture to perceive and respond to dynamic system parameters, ensuring adaptability across varied mission scenarios. The network is trained via an MCTSbased optimization algorithm, where the tree search enhances policy exploration and effectively handles the high-latency rewards of the landing task. Moreover, we introduce an enhanced MCTS by incorporating double progressive widening modifications to refine the deployed action policies. Numerical simulations demonstrate the proposed framework's superior performance and robustness in achieving reliable landing guidance across a wide range of environmental uncertainties.
引用
收藏
页码:723 / 734
页数:12
相关论文
共 40 条
[1]   Asteroid precision landing via Probabilistic Multiple-Horizon Multiple-Model Predictive Control [J].
AlandiHallaj, MohammadAmin ;
Assadian, Nima .
ACTA ASTRONAUTICA, 2019, 161 :531-541
[2]   Autonomous Maneuver Planning for Small-Body Reconnaissance via Reinforcement Learning [J].
Chen, Zheng ;
Cui, Hutao ;
Tian, Yang .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2024, 47 (09) :1872-1884
[3]  
Couetoux Adrien, 2011, Learning and Intelligent Optimization. 5th International Conference, LION 5. Selected Papers, P433, DOI 10.1007/978-3-642-25566-3_32
[4]   Model Predictive Control in Aerospace Systems: Current State and Opportunities [J].
Eren, Utku ;
Prach, Anna ;
Kocer, Basaran Bahadir ;
Rakovic, Sasa V. ;
Kayacan, Erdal ;
Acikmese, Behcet .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (07) :1541-1566
[5]   Robust interplanetary trajectory design under multiple uncertainties via meta-reinforcement learning [J].
Federici, Lorenzo ;
Zavoli, Alessandro .
ACTA ASTRONAUTICA, 2024, 214 :147-158
[6]   Meta-reinforcement learning for adaptive spacecraft guidance during finite-thrust rendezvous missions [J].
Federici, Lorenzo ;
Scorsoglio, Andrea ;
Zavoli, Alessandro ;
Furfaro, Roberto .
ACTA ASTRONAUTICA, 2022, 201 :129-141
[7]   Image-Based Meta-Reinforcement Learning for Autonomous Guidance of an Asteroid Impactor [J].
Federici, Lorenzo ;
Scorsoglio, Andrea ;
Ghilardi, Luca ;
D'Ambrosio, Andrea ;
Benedikter, Boris ;
Zavoli, Alessandro ;
Furfaro, Roberto .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2022, 45 (11) :2013-2028
[8]   Asteroid Precision Landing via Multiple Sliding Surfaces Guidance Techniques [J].
Furfaro, Roberto ;
Cersosimo, Dario ;
Wibben, Daniel R. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2013, 36 (04) :1075-1092
[9]  
Gaudet B., 2013, Adv. Astronaut. Sci., V148, P17
[10]   Terminal adaptive guidance via reinforcement meta-learning: Applications to autonomous asteroid close-proximity operations [J].
Gaudet, Brian ;
Linares, Richard ;
Furfaro, Roberto .
ACTA ASTRONAUTICA, 2020, 171 :1-13