Bases of twisted wreath products

被引:0
作者
Shi, Xiaomeng [1 ]
Liu, Yin [2 ]
Chen, Guiyun [1 ]
Yan, Yanxiong [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
基金
美国国家科学基金会;
关键词
Quasiprimitive; Permutation group; Twisted wreath product; Base size; NO REGULAR ORBITS; PERMUTATION-GROUPS; LINEAR-GROUPS; PARTITION ACTIONS; PRIMITIVE GROUPS; SIZES; SET;
D O I
10.1007/s40304-024-00437-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finite quasiprimitive permutation groups of twisted wreath type are the finite permutation groups with a unique minimal normal subgroup which is non-abelian, non-simple and acts regularly. If T is a non-abelian simple group and P is a group that conveys transitive action on the set k={1,2,& mldr;,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{k}=\{1,2,\ldots ,k\}$$\end{document} with k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 2$$\end{document}, then every permutation group in this classification can be considered permutation isomorphic to G=Tk:P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=T<^>k{:}P$$\end{document}, a twisted wreath product acting on its base group Omega=Tk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega =T<^>k$$\end{document}. We prove that if T congruent to An,P congruent to Ml:N <= Sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\cong \textrm{A}_n,P\cong M<^>l{:}N\leqslant \textrm{S}_k$$\end{document} with M=As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\textrm{A}_s$$\end{document} or classical group with dimensions less than or equal to n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2$$\end{document}, n <={8,s,& ell;}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\leqslant \{8,s,\ell \}$$\end{document}, then the base size of G is 2. Additionally, we demonstrate three possible values of the base size when P is semiprimitive on k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{k}$$\end{document} and G is quasiprimitive on Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}.
引用
收藏
页数:13
相关论文
共 30 条
[1]   SOME APPLICATIONS OF THE 1ST COHOMOLOGY GROUP [J].
ASCHBACHER, M ;
GURALNICK, R .
JOURNAL OF ALGEBRA, 1984, 90 (02) :446-460
[2]  
BADDELEY RW, 1993, P LOND MATH SOC, V67, P547
[3]   Base size, metric dimension and other invariants of groups and graphs [J].
Bailey, Robert F. ;
Cameron, Peter J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :209-242
[4]   On base sizes for actions of finite classical groups [J].
Burness, Timothy C. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :545-562
[5]   Base sizes for primitive groups with soluble stabilisers [J].
Burness, Timothy C. .
ALGEBRA & NUMBER THEORY, 2021, 15 (07) :1755-1807
[6]   Base sizes for S-actions of finite classical groups [J].
Burness, Timothy C. ;
Guralnick, Robert M. ;
Saxl, Jan .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (02) :711-756
[7]   On base sizes for symmetric groups [J].
Burness, Timothy C. ;
Guralnick, Robert M. ;
Saxl, Jan .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :386-391
[8]   Base sizes for sporadic simple groups [J].
Burness, Timothy C. ;
O'Brien, E. A. ;
Wilson, Robert A. .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) :307-333
[9]   Base sizes for simple groups and a conjecture of Cameron [J].
Burness, Timothy C. ;
Liebeck, Martin W. ;
Shalev, Aner .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 98 :116-162
[10]   ON GROUPS WITH NO REGULAR ORBITS ON THE SET OF SUBSETS [J].
CAMERON, PJ ;
NEUMANN, PM ;
SAXL, J .
ARCHIV DER MATHEMATIK, 1984, 43 (04) :295-296