Optimal enforcement of causality in non-parametric transfer function estimation

被引:2
作者
González, Rodrigo A. [1 ]
Valenzuela, Patricio E. [2 ]
Rojas, Cristian R. [2 ]
Rojas, Ricardo A. [1 ]
机构
[1] Electronic Engineering Department, Universidad Técnica Federico Santa María, Valparaíso,2390123, Chile
[2] Department of Automatic Control and ACCESS Linnaeus Centre, KTH Royal Institute of Technology, Stockholm,10044, Sweden
来源
IEEE Control Systems Letters | 2017年 / 1卷 / 02期
关键词
Spectral density - Transfer functions - Frequency response - Parameter estimation;
D O I
10.1109/LCSYS.2017.2713821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Traditionally, non-parametric impulse and frequency response functions are estimated by taking the ratio of power spectral density estimates. However, this approach may often lead to non-causal estimates. In this letter, we derive a closed form expression for the impulse response estimator by smoothed empirical transfer function estimate, which allows optimal enforcement of causality on non-parametric estimators based on spectral analysis. The new method is shown to be asymptotically unbiased and of minimum covariance in a positive semidefinite sense among a broad class of linear estimators. Numerical simulations illustrate the performance of the new estimator. © 2017 IEEE.
引用
收藏
页码:268 / 273
相关论文
empty
未找到相关数据