ANALYTIC SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

被引:0
作者
Wang, Kaizhi [1 ]
Zhong, Tingyu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
关键词
Convergence; exact solutions; Hamilton-Jacobi equations;
D O I
10.1090/proc/17247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We establish the convergence of a modified variational iteration sequence to the local analytic solution of the Cauchy problem for HamiltonJacobi equations with analytic Hamiltonians and initial data. The main ingredient is the method of majorants. A significant finding is the precise estimation of the expansion of each iteration function, allowing the identification of an analytic majorant that majorizes all these functions near the origin. Finally, as an application, we give numerical results on how to use this method to approximate the analytic solution to the inviscid Burgers' equation with quadratic monomial initial data.
引用
收藏
页数:13
相关论文
共 7 条
[1]  
Cauchy A., 1842, C. R. Acad. Sci. Paris, V39, P1020
[2]  
Evans L.C., 1998, Graduate Studies in Mathematics, V19, P662
[3]  
Federer H., 1969, Die Grundlehren der mathematischen Wissenschaften, V153
[4]  
Finlayson B.A., 2013, Classics in Applied Mathematics, DOI DOI 10.1137/1.9781611973242
[5]   Approximate analytical solution for seepage flow with fractional derivatives in porous media [J].
He, JH .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 167 (1-2) :57-68
[6]   Application of variational iteration method for Hamilton-Jacobi-Bellman equations [J].
Kafash, B. ;
Delavarkhalafi, A. ;
Karbassi, S. M. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) :3917-3928
[7]  
von Kowalevsky Sophie, 1875, J. Reine Angew. Math, V80, P1, DOI [10.1515/crll.1875.80.1, DOI 10.1515/CRLL.1875.80.1]